Linear programming bounds for codes in grassmannian spaces

In this paper, we develop the linear programming method to obtain bounds for the cardinality of Grassmannian codes endowed with the chordal distance. We obtain a bound and its asymptotic version that generalize the well-known bound for codes in the real projective space obtained by Kabatyanskiy and Levenshtein, and improve the Hamming bound for sufficiently large minimal distances

[1]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  Lars Vretare,et al.  Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials , 1984 .

[4]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[7]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[8]  POLYNOMES DE JACOBI GENERALISES , 1991 .

[9]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[10]  Christine Bachoc,et al.  Designs in Grassmannian Spaces and Lattices , 2002 .

[11]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[12]  Christine Bachoc,et al.  Codes and designs in Grassmannian spaces , 2004, Discret. Math..

[13]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[14]  R. H. Hardin,et al.  A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces , 1999, math/0208002.

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  Alexander Barg,et al.  Spectral approach to linear programming bounds on codes , 2005, 2006 IEEE International Symposium on Information Theory.

[17]  Richard P. Stanley,et al.  Review: I. G. Macdonald, Symmetric functions and Hall polynomials , 1981 .

[18]  Vladimir I. Levenshtein,et al.  Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.

[19]  Alexander Barg,et al.  Bounds on packings of spheres in the Grassmann manifold , 2002, IEEE Trans. Inf. Theory.

[20]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[21]  Tom H. Koornwinder,et al.  Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula : (prepublication) , 1978 .

[22]  A. G. Constantine,et al.  Generalized Jacobi Polynomials as Spherical Functions of the Grassmann Manifold , 1974 .

[23]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables: Subject index , 2001 .

[24]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[25]  Christine Bachoc,et al.  Designs, groups and lattices , 2007, 0712.1939.