A study of working fluids for heat driven ejector refrigeration using lumped parameter models

Abstract This paper studies the influence of working fluids over the performance of heat driven ejector refrigeration systems performance by using a lumped parameter model. The model used has been selected after a comparison of different models with a set of experimental data available in the literature. The effect of generator, evaporator and condenser temperature over the entrainment ratio and the COP has been investigated for different working fluids in the typical operating conditions of low grade energy sources. The results show a growth in performance (the entrainment ratio and the COP) with a rise in the generator and evaporator temperature and a decrease in the condenser temperature. The working fluids have a great impact on the ejector performance and each refrigerant has its own range of operating conditions. R134a is found to be suitable for low generator temperature (70–100 °C), whereas the hydrocarbons R600 is suitable for medium generator temperatures (100–130 °C) and R601 for high generator temperatures (130–180 °C).

[1]  Bin-Juine Huang,et al.  A 1-D analysis of ejector performance , 1999 .

[2]  Mohamed Ouzzane,et al.  Numerical evaluation of ejector-assisted mechanical compression systems for refrigeration applications , 2014 .

[3]  Jianyong Chen,et al.  Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives , 2014 .

[4]  Kim Tiow Ooi,et al.  One dimensional model of an ejector with special attention to Fanno flow within the mixing chamber , 2014 .

[5]  Costante Mario Invernizzi,et al.  Thermodynamic optimization of ejector actuated refrigerating cycles , 2008 .

[6]  A. Selvaraju,et al.  Experimental investigation on R134a vapour ejector refrigeration system , 2006 .

[7]  Jacek Kasperski,et al.  Performance estimation of ejector cycles using heavier hydrocarbon refrigerants , 2014 .

[8]  André Lallemand,et al.  Influence de la nature des fluides, purs ou en mélanges non-azéotropiques, sur les performances d'une machine de climatisation à éjecto-compresseur , 1995 .

[9]  Eckhard A. Groll,et al.  Study of ejector efficiencies in refrigeration cycles , 2013 .

[10]  Jahar Sarkar,et al.  Ejector enhanced vapor compression refrigeration and heat pump systems—A review , 2012 .

[11]  Juergen Koehler,et al.  Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector , 2012 .

[12]  Björn Palm,et al.  Screening of working fluids for the ejector refrigeration system , 2014 .

[13]  Bukola Olalekan Bolaji,et al.  Ozone depletion and global warming: Case for the use of natural refrigerant – a review , 2013 .

[14]  Fang Liu,et al.  Review on Ejector Efficiencies in Various Ejector Systems , 2014 .

[15]  Da-Wen Sun,et al.  Variable geometry ejectors and their applications in ejector refrigeration systems , 1996 .

[16]  Ali E. Ablwaifa A theoretical and experimental investigation of jet-pump refrigeration system , 2006 .

[17]  Ioan Sarbu,et al.  Review of solar refrigeration and cooling systems , 2013 .

[18]  Bin-Juine Huang,et al.  Performance optimization for a variable throat ejector in a solar refrigeration system , 2013 .

[19]  Junjie Yan,et al.  A 1D model to predict ejector performance at critical and sub-critical operational regimesModèle unidimensionnel utilisé pour prévoir la performance d'un éjecteur sous des conditions de fonctionnement critiques et sous-critiques , 2013 .

[20]  Ruzhu Wang,et al.  Progress of mathematical modeling on ejectors , 2009 .

[21]  Sergio Colle,et al.  A general model for evaluation of vapor ejectors performance for application in refrigeration , 2012 .

[22]  Kamaruzzaman Sopian,et al.  Review on solar-driven ejector refrigeration technologies , 2009 .

[23]  Sergio Colle,et al.  Simulation and economic optimization of a solar assisted combined ejector–vapor compression cycle for cooling applications , 2010 .

[24]  Bogdan Diaconu,et al.  Influence of geometrical factors on steam ejector performance – A numerical assessment , 2009 .

[25]  A. Mani,et al.  Experimental investigations on ejector refrigeration system with ammonia , 2007 .

[26]  A. B. Little,et al.  Comparative assessment of alternative cycles for waste heat recovery and upgrade , 2011 .

[27]  Wenjian Cai,et al.  Shock circle model for ejector performance evaluation , 2007 .

[28]  J. Navarro-Esbrí,et al.  Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems , 2015 .

[29]  G. K. Alexis,et al.  Performance characteristics of a methanol ejector refrigeration unit , 2004 .

[30]  Jean-Marie Seynhaeve,et al.  CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation , 2009 .

[31]  Bogdan Diaconu,et al.  Numerical assessment of steam ejector efficiencies using CFD , 2009 .

[32]  I. Sârbu,et al.  A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems , 2014 .

[33]  Emanuela Colombo,et al.  CFD Study of Ejector Efficiencies , 2014 .

[34]  Saffa Riffat,et al.  Design, testing and mathematical modelling of a small-scale CHP and cooling system (small CHP-ejector trigeneration) , 2007 .

[35]  Jean-Marie Seynhaeve,et al.  CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features , 2009 .

[36]  Björn Palm,et al.  Parametric analysis of ejector working characteristics in the refrigeration system , 2014 .

[37]  R. Yapıcı,et al.  Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio , 2008 .

[38]  J. García del Valle,et al.  An experimental investigation of a R-134a ejector refrigeration system , 2014 .

[39]  Saffa Riffat,et al.  Recent developments in ejector refrigeration technologies , 2013 .

[40]  Vincent Lemort,et al.  Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp , 2014, Industrial & engineering chemistry research.

[41]  Armin Hafner,et al.  A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: An irreversibility analysis , 2014 .

[42]  Supachart Chungpaibulpatana,et al.  Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance , 2001 .