An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization

We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established recently by Monteiro and Svaiter. As applications, we propose and analyze the iteration-complexity of an inexact operator splitting algorithm—which generalizes the original Spingarn’s splitting method—and of a parallel forward–backward algorithm for multi-term composite convex optimization.

[1]  M. Solodov,et al.  A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .

[2]  Patrick L. Combettes,et al.  A primal-dual method of partial inverses for composite inclusions , 2013, Optim. Lett..

[3]  Adam Ouorou Epsilon-proximal decomposition method , 2004, Math. Program..

[4]  Renato D. C. Monteiro,et al.  On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..

[5]  L. Briceño-Arias Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions , 2012, 1212.5942.

[6]  M. Solodov,et al.  A Class of Variable Metric Decomposition Methods for Monotone Variational Inclusions , 2009 .

[7]  Renato D. C. Monteiro,et al.  An adaptive accelerated first-order method for convex optimization , 2016, Comput. Optim. Appl..

[8]  R. Boţ,et al.  A Hybrid Proximal-Extragradient Algorithm with Inertial Effects , 2014, 1407.0214.

[9]  R. Monteiro,et al.  Convergence rate of inexact proximal point methods with relative error criteria for convex optimization , 2010 .

[10]  M. Fukushima,et al.  "Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" , 2010 .

[11]  M. Solodov,et al.  A hybrid projection-proximal point algorithm. , 1998 .

[12]  Benar Fux Svaiter,et al.  General Projective Splitting Methods for Sums of Maximal Monotone Operators , 2009, SIAM J. Control. Optim..

[13]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[14]  Regina Sandra Burachik,et al.  An inexact method of partial inverses and a parallel bundle method , 2006, Optim. Methods Softw..

[15]  Renato D. C. Monteiro,et al.  Complexity of Variants of Tseng's Modified F-B Splitting and Korpelevich's Methods for Hemivariational Inequalities with Applications to Saddle-point and Convex Optimization Problems , 2011, SIAM J. Optim..

[16]  Michel Théra,et al.  ε-Subdifferentials in terms of subdifferentials , 1996 .

[17]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[18]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[19]  Renato D. C. Monteiro,et al.  An Accelerated HPE-Type Algorithm for a Class of Composite Convex-Concave Saddle-Point Problems , 2016, SIAM J. Optim..

[20]  Renato D. C. Monteiro,et al.  Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems , 2014, Comput. Optim. Appl..

[21]  Paulo J. S. Silva,et al.  A practical relative error criterion for augmented Lagrangians , 2012, Mathematical Programming.

[22]  A. Iusem,et al.  On the proximal point method for equilibrium problems in Hilbert spaces , 2010 .

[23]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  J. Spingarn Partial inverse of a monotone operator , 1983 .

[26]  Heinz H. Bauschke,et al.  Attouch-Théra duality revisited: Paramonotonicity and operator splitting , 2011, J. Approx. Theory.

[27]  Renato D. C. Monteiro,et al.  Improved Pointwise Iteration-Complexity of A Regularized ADMM and of a Regularized Non-Euclidean HPE Framework , 2016, SIAM J. Optim..

[28]  A. Iusem,et al.  Enlargement of Monotone Operators with Applications to Variational Inequalities , 1997 .

[29]  Boris S. Mordukhovich,et al.  Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization , 2010 .

[30]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[31]  Benar Fux Svaiter,et al.  An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions , 2000, Math. Oper. Res..

[32]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[33]  B. Svaiter,et al.  ε-Enlargements of Maximal Monotone Operators: Theory and Applications , 1998 .

[34]  Benar Fux Svaiter,et al.  A family of projective splitting methods for the sum of two maximal monotone operators , 2007, Math. Program..