Palaeo-hydrochemistry reconstructed from fossil mollusc shells from dammed palaeo-lake sediments in the Yarlung Tsangpo valley, Tibet

[1]  F. Ban,et al.  Geochemistry of modern shells of the gastropod Radix in the Tibetan Plateau and its implications for palaeoenvironmental reconstruction , 2021 .

[2]  Hai-ping Hu,et al.  Mid-Holocene palaeohydrochemistry and palaeohydrology of Yamdrok Yumtso, southern Tibetan Plateau, reconstructed from δ18O and δ13C of fossil shells of the gastropod Radix auricularia , 2020 .

[3]  C. Clewing,et al.  A new pill clam from an unusual habitat: the interstitial Pisidium interstitialis n. sp. (Bivalvia: Sphaeriidae) from southwestern and Central Germany , 2020 .

[4]  F. Riedel,et al.  Intra-seasonal hydrological processes on the western Tibetan Plateau: Monsoonal and convective rainfall events at ~7.5 ka , 2020 .

[5]  Hai-ping Hu,et al.  Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: Implications for terrace genesis and outburst flooding , 2018, Quaternary Science Reviews.

[6]  Hai-ping Hu,et al.  δ18O and δ13C in fossil shells of Radix sp. from the sediment succession of a dammed palaeo‐lake in the Yarlung Tsangpo valley, Tibet, China , 2017 .

[7]  Fahu Chen,et al.  A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: Hydroclimatic evolution and changes in atmospheric circulation , 2017 .

[8]  Hai-ping Hu,et al.  Potential forcing mechanisms of Holocene lake-level changes at Nam Co, Tibetan Plateau: Inferred from the stable isotopic composition of shells of the gastropod Radix , 2017 .

[9]  J. Ji,et al.  Late Pleistocene salt-water lake in the Linzhi area, southeastern Tibetan Plateau , 2016 .

[10]  Hai-ping Hu,et al.  Relationship between the shell geochemistry of the modern aquatic gastropod Radix and water chemistry of lakes of the Tibetan Plateau , 2016, Hydrobiologia.

[11]  M. Pełechaty,et al.  Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes , 2015 .

[12]  A. Lorrain,et al.  An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells , 2015 .

[13]  G. Burr,et al.  Late Pleistocene sedimentary history of multiple glacially dammed lake episodes along the Yarlung-Tsangpo river, southeast Tibet , 2014, Quaternary Research.

[14]  D. Scherler,et al.  Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: A >100 k.y. chronology from the Shyok Valley, Karakoram , 2014 .

[15]  F. Riedel,et al.  Sclerochronological oxygen and carbon isotope ratios in Radix (Gastropoda) shells indicate changes of glacial meltwater flux and temperature since 4,200 cal yr BP at Lake Karakul, eastern Pamirs (Tajikistan) , 2014, Journal of Paleolimnology.

[16]  G. Reichart,et al.  A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central Asian Middle Eocene seasonality , 2014 .

[17]  C. Korte,et al.  The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies , 2013 .

[18]  F. Riedel,et al.  Oxygen and carbon isotope patterns archived in shells of the aquatic gastropod Radix: Hydrologic and climatic signals across the Tibetan Plateau in sub-monthly resolution , 2013 .

[19]  Weiguo Liu,et al.  Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai–Tibet Plateau): Implications for lake evolution in arid areas , 2012 .

[20]  F. Riedel,et al.  Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp. (Gastropoda) from the Tibetan Plateau: potential of a new archive for palaeoclimatic studies , 2012 .

[21]  F. Riedel,et al.  Freshwater Biogeography and Limnological Evolution of the Tibetan Plateau - Insights from a Plateau-Wide Distributed Gastropod Taxon (Radix spp.) , 2011, PloS one.

[22]  J. Thébault,et al.  Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies , 2011 .

[23]  F. Riedel,et al.  Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records , 2010 .

[24]  P. Anadón,et al.  Variation in Sr uptake in the shell of the freshwater gastropod Bithynia tentaculata from Lake Arreo (northern Spain) and culture experiments , 2010 .

[25]  U. Herzschuh,et al.  Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China , 2010 .

[26]  Shi Yan-ling Preliminary Study on the Inversion of Yalungzangbo River , 2010 .

[27]  Yan Peng,et al.  Stable isotope composition of the modern freshwater bivalve Corbicula fluminea , 2009 .

[28]  Janet K. Thompson,et al.  Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells , 2008 .

[29]  R. Wirth,et al.  Nanostructure, composition and mechanisms of bivalve shell growth , 2008 .

[30]  L. Owen Geomorphology: How Tibet might keep its edge , 2008, Nature.

[31]  A. Finch,et al.  Mg in aragonitic bivalve shells: Seasonal variations and mode of incorporation in Arctica islandica , 2008 .

[32]  K. Kreutz,et al.  Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions , 2008 .

[33]  K. C. Lohmann,et al.  Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica , 2008 .

[34]  C. Strasser,et al.  Growth rate and age effects on Mya arenaria shell chemistry: Implications for biogeochemical studies , 2008 .

[35]  I. Hajdas,et al.  Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska , 2008, Quaternary Science Reviews.

[36]  Kelin X. Whipple,et al.  The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China) , 2007 .

[37]  Sunil Kumar Singh,et al.  Temporal variation in Sr and 87Sr/86Sr of the Brahmaputra: Implications for annual fluxes and tracking flash floods through chemical and isotope composition , 2007 .

[38]  A. Lücke,et al.  A stable isotope record from freshwater lake shells of the eastern Tibetan Plateau, China, during the past two centuries , 2007 .

[39]  T. Vennemann,et al.  Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains , 2006 .

[40]  K. Walker,et al.  Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): Implications for reconstructing seasonality , 2006 .

[41]  T. Bailey,et al.  Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: A case study from the River Ehen, Cumbria, UK , 2006 .

[42]  A. Lorrain,et al.  Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus , 2005 .

[43]  D. Dettman,et al.  Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition , 2005 .

[44]  R. Cunjak,et al.  21 – ATLANTIC COAST RIVERS OF CANADA , 2005 .

[45]  A. Geen,et al.  Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region , 2004 .

[46]  D. Montgomery,et al.  Evidence for Holocene megafloods down the tsangpo River gorge, Southeastern Tibet , 2004, Quaternary Research.

[47]  A. Aucour,et al.  � 2003, by the American Society of Limnology and Oceanography, Inc. � 13 C of fluvial mollusk shells (Rhône River): A proxy for dissolved inorganic carbon? , 2022 .

[48]  K. Whipple,et al.  Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U‐Th)/He thermochronology , 2002 .

[49]  Martin Roddaz,et al.  Western Moroccan Mesetaの前地盆地火成活動と,それに関わる地球力学的過程 , 2002 .

[50]  P. Martin,et al.  Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core , 2002 .

[51]  F. Riedel,et al.  Mid to Late Holocene palaeoenvironment of Lake Eastern Juyanze (north-western China) based on ostracods and stable isotopes , 2002 .

[52]  A. Lücke,et al.  Climatic Signals Recorded in Stable Isotope and Trace Elements of Shells in Xincuo Lake, Eastern Tibetan Plateau , 2001 .

[53]  D. Lea,et al.  Climate impact of late quaternary equatorial pacific sea surface temperature variations , 2000, Science.

[54]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[55]  G. Grime,et al.  Metabolism controls Sr/Cr ratios in tossil aragonitic mollusks , 1999 .

[56]  F. Bonadonna,et al.  A 37-Meter Record of Paleoclimatological Events from Stable Isotope Data on Continental Molluscs in Valle di Castiglione, Near Rome, Italy , 1999, Quaternary Research.

[57]  U. V. Grafenstein,et al.  Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies , 1999 .

[58]  D. Dettman,et al.  Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae) , 1999 .

[59]  A. Chivas,et al.  Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments , 1999 .

[60]  R. Telford,et al.  Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley , 1999 .

[61]  D. Zhang Geomorphological problems of the middle reaches of the Tsangpo River, Tibet , 1998 .

[62]  P. Wachniew,et al.  Carbon budget of a mid-latitude, groundwater-controlled lake: Isotopic evidence for the importance of dissolved inorganic carbon recycling , 1997 .

[63]  C. Paull,et al.  CARBON ISOTOPES IN BIOLOGICAL CARBONATES : RESPIRATION AND PHOTOSYNTHESIS , 1997 .

[64]  M. Risk,et al.  Stable Carbon and Oxygen Isotope Records From Lake Erie Sediment Cores: Mollusc Aragonite 4600 BP–200 BP , 1997 .

[65]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .

[66]  D. Hollander,et al.  CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer , 1991 .

[67]  Y. Rosenthal,et al.  The applicability of trace elements in freshwater shells for paleogeochemical studies , 1989 .

[68]  T. Oomori,et al.  Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C , 1987 .

[69]  P. Quay,et al.  The carbon cycle for Lake Washington—A stable isotope study1 , 1986 .

[70]  J. Dodd,et al.  Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies , 1982 .

[71]  P. Fritz,et al.  18O and 13C in the shells of freshwater molluscs and their environments , 1974 .

[72]  George V. Chilingar,et al.  Chapter 2 Elemental Composition of Carbonate Skeletons, Minerals, and Sediments , 1967 .

[73]  J. Dodd Environmental control of strontium and magnesium in Mytilus , 1965 .

[74]  E. Degens,et al.  Comparative Studies of Amino-Acids in Shell Structures of Gyraulus trochiformis, Stahl, from the Tertiary of Steinheim, Germany , 1965, Nature.

[75]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[76]  Y. Liu ON THE FRESHWATER PULMONATA FROM SHIGATZE AND GYANGTSE REGIONS IN TIBET, CHINA , 1963 .

[77]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[78]  H. J. Cleave,et al.  The Molluscan Family Planorbidae , 1945 .