Faster pitch control of cholesteric liquid crystals

We report the spectral broadening of selective reflection (SR) with higher response speed in cholesteric liquid crystals (ChLCs). A planarly aligned ChLC was applied with an in-plane electric field with an inhomogeneous intensity in the cell-depth direction by using common interdigitated electrodes and selecting the cell gap and the interval between electrodes. The electric field normal to the helix increased the helical pitch of the ChLC, while the inhomogeneous field intensity caused the spatial distribution of the helical pitch in the cell-depth direction, increasing the SR band width from 100 to 300 nm with the response time of 3 ms.

[1]  M. Ozaki,et al.  Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded with a Liquid Crystal Nanopore Network , 2011, Advanced materials.

[2]  Patel,et al.  Flexoelectric electro-optics of a cholesteric liquid crystal. , 1987, Physical review letters.

[3]  Masanori Ozaki,et al.  Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal , 2003 .

[4]  Giuseppe Chidichimo,et al.  Cholesteric Emulsions for Colored Displays , 2005 .

[5]  Peter Palffy-Muhoray,et al.  Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers , 2001 .

[6]  D. J. Broer,et al.  Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient , 1995, Nature.

[7]  M. Ozaki,et al.  Electric Field Dependence of Lasing Wavelength in Cholesteric Liquid Crystal with an In-Plane Helix Alignment , 2010 .

[8]  M. Ozaki,et al.  Deformation‐Free, Microsecond Electro‐Optic Tuning of Liquid Crystals , 2013 .

[9]  Stephen M. Morris,et al.  Liquid-crystal lasers , 2010 .

[10]  R. Meyer DISTORTION OF A CHOLESTERIC STRUCTURE BY A MAGNETIC FIELD , 1969 .

[11]  Shin-Tson Wu,et al.  Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture , 2006 .

[12]  R. S. Zola,et al.  Effect of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals , 2012 .

[13]  T. White,et al.  Widely Tunable, Photoinvertible Cholesteric Liquid Crystals , 2011, Advanced materials.

[14]  W. Huck,et al.  Electrically Tuneable Liquid Crystal Photonic Bandgaps , 2009 .

[15]  B. Feringa,et al.  Reversible full-range color control of a cholesteric liquid-crystalline film by using a molecular motor. , 2006, Chemistry, an Asian journal.

[16]  M. Ozaki,et al.  Deformation-free switching of polymer-stabilized cholesteric liquid crystals by low-temperature polymerization , 2016 .

[17]  T. White,et al.  Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  Deng-Ke Yang,et al.  Cholesteric reflective display: Drive scheme and contrast , 1994 .

[19]  Lalgudi V. Natarajan,et al.  Laser initiated thermal tuning of a cholesteric liquid crystal , 2010 .

[20]  Yo Inoue,et al.  Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays. , 2016, Optics express.

[21]  S. Serak,et al.  Polymer stabilization of phototunable cholesteric liquid crystals , 2009 .

[22]  P. Gennes,et al.  The physics of liquid crystals , 1974 .