Quantum backreaction through the Bohmian particle.

A novel solution to the quantum backreaction problem in a mixed quantum-classical simulation is provided using the Bohmian interpretation of quantum mechanics. The Bohmian backreaction is unique, computationally simple, features reaction channel branching, and easily gives the full classical limit. The Bohmian quantum-classical method is illustrated by application to a model of O2 interacting with a Pt surface.

[1]  P. Rossky,et al.  RELATIONSHIP BETWEEN QUANTUM DECOHERENCE TIMES AND SOLVATION DYNAMICS IN CONDENSED PHASE CHEMICAL SYSTEMS , 1998, quant-ph/9804004.

[2]  Y. Pereverzev,et al.  Quantized Hamilton dynamics , 2000 .

[3]  W. Miller,et al.  Semiclassical Theory of Electronic Transitions in Low Energy Atomic and Molecular Collisions Involving Several Nuclear Degrees of Freedom , 1972 .

[4]  D. Sholl,et al.  A generalized surface hopping method , 1998 .

[5]  Coupling classical and quantum variables using continuous quantum measurement theory , 1997, quant-ph/9705008.

[6]  O. Prezhdo Mean field approximation for the stochastic Schrödinger equation , 1999 .

[7]  P. Rossky,et al.  Quantum decoherence in mixed quantum‐classical systems: Nonadiabatic processes , 1995 .

[8]  V. Anderson Quantum Backreaction on "Classical" Variables. , 1994, Physical review letters.

[9]  S. Hammes-Schiffer,et al.  Proton transfer in solution: Molecular dynamics with quantum transitions , 1994 .

[10]  Jones Comment on "Quantum backreaction on 'Classical' variables." , 1996, Physical review letters.

[11]  Michael F. Herman Dynamics by Semiclassical Methods , 1994 .

[12]  Relativistic Quantization and Improved Equation for a Free Relativistic Particle , 1995, quant-ph/9502022.

[13]  Nancy Makri,et al.  Time‐dependent self‐consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments , 1987 .

[14]  R. Wyatt,et al.  Quantum Wave Packet Dynamics with Trajectories , 1999 .

[15]  G. D. Billing,et al.  Classical Path Method in Inelastic and Reactive Scattering , 1994 .

[16]  Boucher,et al.  Semiclassical physics and quantum fluctuations. , 1988, Physical review. D, Particles and fields.

[17]  J. Halliwell,et al.  Effective theories of coupled classical and quantum variables , 1997, gr-qc/9808071.

[18]  R. Wyatt Quantum wave packet dynamics with trajectories: Application to reactive scattering , 1999 .

[19]  J. C. Burant,et al.  Nonadiabatic dynamics via the classical limit Schrödinger equation , 2000 .

[20]  O. Prezhdo,et al.  Mixing Quantum and Classical Mechanics , 1996, quant-ph/9610016.

[21]  C. Meier,et al.  Mixing quantum and classical dynamics using Bohmian trajectories , 2000 .

[22]  R. Kosloff,et al.  Non-adiabatic reactive routes and the applicability of multiconfiguration time-dependent self-consistent field approximations , 1991 .

[23]  R. D. Gregory,et al.  Molecular interactions by the time-dependent Hartree method , 1964 .

[24]  P. Pechukas,et al.  Time-Dependent Semiclassical Scattering Theory. II. Atomic Collisions , 1969 .

[25]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[26]  H. Rabitz,et al.  Alternating direction implicit technique and quantum evolution within the hydrodynamical formulation of Schrödinger's equation , 1998 .

[27]  Prezhdo Quantum anti-zeno acceleration of a chemical reaction , 2000, Physical review letters.

[28]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[29]  Richard A. Friesner,et al.  Nonadiabatic processes in condensed matter: semi-classical theory and implementation , 1991 .

[30]  K. Hepp The classical limit for quantum mechanical correlation functions , 1974 .

[31]  L. L. Salcedo,et al.  Impediments to mixing classical and quantum dynamics , 1998, quant-ph/9812046.

[32]  R. Berry,et al.  Theory of Elementary Atomic and Molecular Processes in Gases , 1975 .

[33]  Mark A. Ratner,et al.  Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .

[34]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[35]  Senitzky Ir Can classical and quantum variables have a consistent mutual interaction , 1996 .

[36]  B. Hiley,et al.  Quantum State Teleportation Understood Through the Bohm Interpretation , 1999 .

[37]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[38]  I. V. Aleksandrov The Statistical Dynamics of a System Consisting of a Classical and a Quantum Subsystem , 1981 .

[39]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[40]  Donald G. Truhlar,et al.  Trajectory‐surface‐hopping study of Na(3p 2P) +H2 → Na(3s 2S)+H2(v′, j′, θ) , 1983 .

[41]  P. Rossky,et al.  Mean-field molecular dynamics with surface hopping , 1997 .