Statistics of the binary quantizer error in single-loop sigma-delta modulation with white Gaussian input

Representations and statistical properties of the process e¯ defined by e¯n+1=λ(e¯n+ξn ), are given. Here λ(u):=u-b·sign(u)+m and {ξn}n=0+∞ is Gaussian white noise. The process e¯ represents the binary quantizer error in a model for single-loop sigma-delta modulation. The innovations variables are found and the existence and uniqueness of an invariant probability measure, ergodicity properties, as well as the existence of the exponential moment with respect to the invariant probability are proved using Markov process theory. We consider also e¯ as a random perturbation, for small values of the variance of ξn, Of the orbits of sn+1=λ(sn). Here sn has the uniform invariant distribution on the interval [m-h, m+b]. Analytical approximations to the structure of the power spectrum of e¯ are obtained using a linear prediction in terms of the innovations variables and the perturbation approach

[1]  W. Stout Almost sure convergence , 1974 .

[2]  Robert M. Gray,et al.  Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.

[3]  H. Kushner Introduction to stochastic control , 1971 .

[4]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[5]  E. Protonotarios Slope overload noise in differential pulse code modulation systems , 1967 .

[6]  Nuggehally Sampath Jayant A First-Order Markov Model for Understanding Delta Modulation Noise Spectra , 1978, IEEE Trans. Commun..

[7]  H. Rowe Memoryless nonlinearities with Gaussian inputs: Elementary results , 1982, The Bell System Technical Journal.

[8]  Stamatis Cambanis,et al.  On the statistics of the error in predictive coding for stationary Ornstein-Uhlenbeck processes , 1992, IEEE Trans. Inf. Theory.

[9]  R. Tweedie,et al.  Techniques for establishing ergodic and recurrence properties of continuous‐valued markov chains , 1978 .

[10]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[11]  Elias Masry,et al.  Delta Modulation of the Wiener Process , 1975, IEEE Trans. Commun..

[12]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[13]  J. Farison,et al.  Analysis of a class of non-linear discrete-time systems by the Volterra series† , 1973 .

[14]  L. J. Greenstein,et al.  Slope overload noise in linear delta modulators with Gaussian inputs , 1973 .

[15]  R. Tweedie Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.

[16]  John Vanderkooy,et al.  Dither in Digital Audio , 1987 .

[17]  R. Steele,et al.  Delta Modulation Systems , 1975 .

[18]  Stamatis Cambanis,et al.  Signal identification after noisy nonlinear transformations , 1980, IEEE Trans. Inf. Theory.

[19]  David Slepian,et al.  On delta modulation , 1972 .

[20]  Ian Galton,et al.  Granular quantization noise in the first-order delta-sigma modulator , 1993, IEEE Trans. Inf. Theory.

[21]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[22]  J. Iwersen Calculated quantizing noise of single-integration delta-modulation coders , 1969 .

[23]  Gianfranco Cariolaro,et al.  Second-order analysis of the output of a discrete-time Volterra system driven by white noise , 1980, IEEE Trans. Inf. Theory.

[24]  Robert M. Gray,et al.  Sigma-delta modulation with i.i.d. Gaussian inputs , 1990, IEEE Trans. Inf. Theory.

[25]  T. Koski Nonlinear autoregression in the theory of signal compression , 1992 .

[26]  John C. Kieffer,et al.  Analysis of DC input response for a class of one-bit feedback encoders , 1990, IEEE Trans. Commun..

[27]  Nariman Farvardin,et al.  Rate-distortion performance of DPCM schemes for autoregressive sources , 1985, IEEE Trans. Inf. Theory.

[28]  A. Gersho Stochastic stability of delta modulation , 1972 .

[29]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[30]  John C. Kieffer,et al.  Stochastic stability for feedback quantization schemes , 1982, IEEE Trans. Inf. Theory.

[31]  Gabor C. Temes,et al.  Oversampling Delta Sigma Data Converters , 1991 .

[32]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[33]  M. Wagdy Effect of various dither forms on quantization errors of ideal A/D converters , 1989 .

[34]  Terrence L. Fine,et al.  The response of a particular nonlinear system with feedback to each of two random processes , 1968, IEEE Trans. Inf. Theory.

[35]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .