On the recognition of fuzzy circular interval graphs

Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial time algorithm for recognizing such graphs, and more importantly for building a suitable model for these graphs.

[1]  Friedrich Eisenbrand,et al.  Coloring Fuzzy Circular Interval Graphs , 2009, Electron. Notes Discret. Math..

[2]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[3]  Celina M. H. de Figueiredo,et al.  A Linear-Time Algorithm for Proper Interval Graph Recognition , 1995, Inf. Process. Lett..

[4]  Gautier Stauffer On the stable set polytope of claw-free graphs , 2005 .

[5]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[6]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  Ross M. McConnell Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.

[8]  N. S. Barnett,et al.  Private communication , 1969 .

[9]  Friedrich Eisenbrand,et al.  The stable set polytope of quasi-line graphs , 2010, Comb..

[10]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[11]  A. Tamura,et al.  A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph , 2001 .

[12]  Paul D. Seymour,et al.  Claw-free graphs. III. Circular interval graphs , 2008, J. Comb. Theory, Ser. B.

[13]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[14]  Ugo Pietropaoli Some classical combinatorial problems on circulant and claw-free graphs: the isomorphism and coloring problems on circulant graphs and the stable set problem on claw-free graphs , 2009, 4OR.

[15]  Gianpaolo Oriolo,et al.  A fast algorithm to remove proper and homogeneous pairs of cliques (while preserving some graph invariants) , 2011, Oper. Res. Lett..

[16]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[17]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[18]  Andrew D. King,et al.  Bounding χ in terms of ω and Δ for quasi-line graphs , 2008 .

[19]  Bhawani Sankar Panda,et al.  A linear time recognition algorithm for proper interval graphs , 2003, Inf. Process. Lett..

[20]  Lin Chen,et al.  Efficient parallel recognition of some circular arc graphs, I , 2005, Algorithmica.