An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions

Reference evapotranspiration (ETo) is an essential component of irrigation water management due to it being a basic input for estimating crop water requirements. Multiple approaches have been identified for ETo assessment but most of them are based on daily meteorological data provided by weather station networks that provide an accurate meteorological characterization. A new alternative approach called MA+LSE based on the Makkink-Advection (MAK-Adv) equation in combination with remotely sensed solar radiation and a numerical weather forecast of near surface air temperature has provided good estimates of ETo under different weather conditions in a semi-arid region located in Southern Spain, without requiring local meteorological data.

[1]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[2]  Ayse Irmak,et al.  Reference and Crop Evapotranspiration in South Central Nebraska. I: Comparison and Analysis of Grass and Alfalfa-Reference Evapotranspiration , 2008 .

[3]  M. Jabloun,et al.  Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia , 2008 .

[4]  Jean-Louis Roujean,et al.  Near real‐time provision of downwelling shortwave radiation estimates derived from satellite observations , 2008 .

[5]  Wim G.M. Bastiaanssen,et al.  Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize , 2004 .

[6]  Giuseppe Ciraolo,et al.  A simple method to directly retrieve reference evapotranspiration from geostationary satellite images , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[7]  William O. Pruitt,et al.  Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration , 2004 .

[8]  Christopher A. Fiebrich,et al.  Quality Assurance Procedures in the Oklahoma Mesonetwork , 2000 .

[9]  Zailin Huo,et al.  Artificial neural network models for estimating regional reference evapotranspiration based on climate factors , 2009 .

[10]  Terry J. Gillespie,et al.  Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada , 2010 .

[11]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[12]  J. Cavero,et al.  Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions , 2004 .

[13]  O. Kisi,et al.  Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain) , 2012 .

[14]  E. Fereres,et al.  Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level , 2012 .

[15]  Gorka Landeras,et al.  Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) , 2008 .

[16]  Jonas Ardö,et al.  Mapping daily evapotranspiration and dryness index in the East African highlands using MODIS and SEVIRI data , 2010 .

[17]  Richard G. Allen,et al.  Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation , 1996 .

[18]  R. López-Urrea,et al.  Testing evapotranspiration equations using lysimeter observations in a semiarid climate , 2006 .

[19]  Jerry L. Hatfield,et al.  Data quality checking for single station meteorological databases , 1994 .

[20]  R. G. Allen,et al.  Adjusting temperature parameters to reflect well-watered conditions , 1999 .

[21]  Luis S. Pereira,et al.  Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran , 2013 .

[22]  D. Raes,et al.  Using AquaCrop to derive deficit irrigation schedules , 2010 .

[23]  Rasmus Fensholt,et al.  Combining the triangle method with thermal inertia to estimate regional evapotranspiration — Applied to MSG-SEVIRI data in the Senegal River basin , 2008 .

[24]  J. Cristóbal,et al.  Regional scale evaluation of a MSG solar radiation product for evapotranspiration modeling , 2012 .

[25]  M. Tasumi,et al.  Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level , 2008, Irrigation Science.

[26]  D. Raes,et al.  AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize , 2009 .

[27]  I. Lorite,et al.  Management trends and responses to water scarcity in an irrigation scheme of Southern Spain , 2008 .

[28]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[29]  Inge Sandholt,et al.  A remote sensing driven distributed hydrological model of the Senegal River basin , 2008 .

[30]  Sandra C. Freitas,et al.  The Satellite Application Facility for Land Surface Analysis , 2011 .

[31]  Isabel F. Trigo,et al.  Reference crop evapotranspiration derived from geo-stationary satellite imagery - a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan , 2010 .

[32]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[33]  Isabel F. Trigo,et al.  Reference Crop Evapotranspiration obtained from the geostationary satellite MSG (METEOSAT). , 2012 .

[34]  David D. Tarkalson,et al.  Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate , 2008 .

[35]  A. Persson User Guide to ECMWF forecast products , 2001 .

[36]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[37]  Lionel Jarlan,et al.  Assessment of reference evapotranspiration methods in semi-arid regions: can weather forecast data be used as alternate of ground meteorological parameters? , 2010 .

[38]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[39]  Luciano Mateos,et al.  Assessing deficit irrigation strategies at the level of an irrigation district , 2007 .

[40]  J. Christensen,et al.  A summary of the PRUDENCE model projections of changes in European climate by the end of this century , 2007 .

[41]  Jonas Ardö,et al.  Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite , 2012 .

[42]  Ignacio J. Lorite,et al.  AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop , 2013 .

[43]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[44]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[45]  M. Tasumi,et al.  Performance assessment of an irrigation scheme using indicators determined with remote sensing techniques , 2010, Irrigation Science.

[46]  Françoise Gellens-Meulenberghs,et al.  Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data , 2010 .

[47]  P. Gavilán,et al.  Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment , 2005 .

[48]  I. Lorite,et al.  Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment , 2006 .

[49]  Ignacio J. Lorite,et al.  An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain , 2011 .