Corner-Sharing Tetrahedra for Modeling Micro-Structure

Abstract This paper introduces Corner-Sharing Tetrahedra (CoSTs), a minimalist, constraint-graph representation of micro-structure. CoSTs have built-in structural guarantees, such as connectivity and minimal rigidity. CoSTs form a space, fully accessible via local operations, that is rich enough to design regular or irregular micro-structure at multiple scales within curved objects. All operations are based on efficient local graph manipulation, which also enables efficient analysis and adjustment of static physical properties. Geometric and material detail, parametric or solid splines, can be added locally, on-demand, for example, for printing.

[1]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[2]  Jacobs,et al.  Generic rigidity percolation in two dimensions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[5]  M HoffmanChristoph,et al.  Decomposition Plans for Geometric Constraint Systems, Part I , 2001 .

[6]  K. Kang,et al.  Effects of imperfections on the mechanical behavior of a wire-woven bulk Kagome cellular metal under compression , 2009 .

[7]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[8]  Louis Theran,et al.  Anchored boundary conditions for locally isostatic networks. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Günter Rote,et al.  Planar minimally rigid graphs and pseudo-triangulations , 2003, SCG '03.

[10]  Yong-Hyun Lee,et al.  A wire-woven cellular metal: Part-I, optimal design for applications as sandwich core , 2009 .

[11]  Walter Whiteley,et al.  Recent Advances in the Generic Ridigity of Structures , 1984 .

[12]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[13]  B. Hendrickson,et al.  An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .

[14]  Vadim Shapiro,et al.  Multiscale shape-material modeling by composition , 2018, Comput. Aided Des..

[15]  I. Jasiuk,et al.  Tunneling-percolation behavior of polydisperse prolate and oblate ellipsoids , 2015 .

[16]  Louis Theran,et al.  Analytic analysis of auxetic metamaterials through analogy with rigid link systems , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  M. Franz,et al.  Topological insulator on the kagome lattice , 2009, 0905.3385.

[18]  Haydn N. G. Wadley,et al.  On the performance of truss panels with Kagomé cores , 2003 .

[19]  Günter Rote,et al.  Planar minimally rigid graphs and pseudo-triangulations , 2005, Comput. Geom..

[20]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[21]  Jarek Rossignac,et al.  Designing and processing parametric models of steady lattices , 2018 .

[22]  J. C. Owen,et al.  Algebraic solution for geometry from dimensional constraints , 1991, SMA '91.

[23]  Gershon Elber,et al.  Hierarchical, random and bifurcation tiling with heterogeneity in micro-structures construction via functional composition , 2018, Comput. Aided Des..

[24]  Jiaxi Bai,et al.  Effective thermal conductivity of wire-woven bulk Kagome sandwich panels , 2014 .

[25]  Meera Sitharam,et al.  Characterizing Graphs with Convex and Connected Cayley Configuration Spaces , 2010, Discret. Comput. Geom..

[26]  Alfred M. Bruckstein,et al.  All triangulations are reachable via sequences of edge-flips: an elementary proof , 2008, Comput. Aided Geom. Des..

[27]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[28]  Alexander B. Khanikaev,et al.  Topological edge states of distorted photonic Kagome lattices , 2017, NanoScience + Engineering.

[29]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[30]  M. Dias,et al.  Recipes for selecting failure modes in 2-d lattices , 2016 .

[31]  Bert Jüttler,et al.  Isogeometric segmentation. Part II: On the segmentability of contractible solids with non-convex edges , 2014, Graph. Model..

[32]  Simon D. Guest,et al.  On the collapse of locally isostatic networks , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Jörg Peters,et al.  Symmetric box-splines on root lattices , 2011, J. Comput. Appl. Math..

[34]  J. Canales‐Vázquez,et al.  Fabrication and characterisation of ceramics via low-cost DLP 3D printing , 2017 .

[35]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD , 2001, J. Symb. Comput..

[36]  Vincenzo Vitelli,et al.  Selective buckling via states of self-stress in topological metamaterials , 2015, Proceedings of the National Academy of Sciences.

[37]  N. Fleck,et al.  Microarchitectured cellular solids – the hunt for statically determinate periodic trusses , 2005 .

[38]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[39]  Alex J. Zelhofer,et al.  Resilient 3D hierarchical architected metamaterials , 2015, Proceedings of the National Academy of Sciences.

[40]  Walter Whiteley,et al.  A matroid on hypergraphs, with applications in scene analysis and geometry , 1989, Discret. Comput. Geom..

[42]  Salvatore Torquato,et al.  Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. K. Dewdney,et al.  Wagner's theorem for Torus graphs , 1973, Discret. Math..

[44]  Vadim Shapiro,et al.  Sample-based synthesis of two-scale structures with anisotropy , 2017, Comput. Aided Des..

[45]  Helder C. Rodrigues,et al.  Hierarchical topology optimization addressing material design constraints and application to sandwich-type structures , 2015 .

[46]  R. Connelly,et al.  Mathematics and Tensegrity , 1998, American Scientist.

[47]  B. Hendrickson,et al.  Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .

[48]  B. Roth,et al.  The rigidity of graphs , 1978 .

[49]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[50]  Menghan Wang,et al.  How the Beast really moves: Cayley analysis of mechanism realization spaces using CayMos , 2014, Comput. Aided Des..

[51]  Bill Jackson,et al.  Pin-Collinear Body-and-Pin Frameworks and the Molecular Conjecture , 2008, Discret. Comput. Geom..

[52]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[53]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.

[54]  Menghan Wang,et al.  An Incidence Geometry Approach to Dictionary Learning , 2014, CCCG.

[55]  Seiya Negami,et al.  Diagonal Transformations of Graphs on Closed Surfaces , 1993 .

[56]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..

[57]  Christopher B. Williams,et al.  Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing , 2017, Polymer.

[58]  Ileana Streinu,et al.  Geometric auxetics , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  M. Groeber,et al.  DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D , 2014, Integrating Materials and Manufacturing Innovation.

[60]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[61]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[62]  H. Pollaczek-Geiringer Über die Gliederung ebener Fachwerke , 1927 .

[63]  Elaine Cohen,et al.  Hybrid volume completion with higher-order Bézier elements , 2015, Comput. Aided Geom. Des..

[64]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms , 2001, J. Symb. Comput..

[65]  Cláudio T. Silva,et al.  Bijective maps from simplicial foliations , 2016, ACM Trans. Graph..

[66]  Audrey Lee-St. John,et al.  Graded Sparse Graphs and Matroids , 2007, J. Univers. Comput. Sci..

[67]  Meera Sitharam,et al.  Characterizing graphs with convex and connected configuration spaces , 2008, ArXiv.

[68]  M. Thorpe,et al.  The flexibility window in zeolites , 2006, Nature materials.

[69]  A. Khanikaev,et al.  Topological edge states in acoustic Kagome lattices , 2017 .

[70]  Menghan Wang,et al.  Algorithm 951: Cayley Analysis of Mechanism Configuration Spaces using CayMos: Software Functionalities and Architecture , 2015, TOMS.

[71]  Meera Sitharam,et al.  EASAL (Efficient Atlasing, Analysis and Search of Molecular Assembly Landscapes) , 2012, BICoB.

[72]  Menghan Wang,et al.  Optimal decomposition and recombination of isostatic geometric constraint systems for designing layered materials , 2015, Comput. Aided Geom. Des..

[73]  Damiano Pasini,et al.  Mechanical properties of hierarchical lattices , 2013 .

[74]  Hervé Delingette,et al.  Curved optimal delaunay triangulation , 2018, ACM Trans. Graph..

[75]  Nicola Pugno,et al.  Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs , 2014 .

[76]  B. Chen,et al.  Topological modes bound to dislocations in mechanical metamaterials , 2014, Nature Physics.

[77]  Helder C. Rodrigues,et al.  Multiscale topology optimization of bi-material laminated composite structures , 2015 .

[78]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .