Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures.

InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 µm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 µm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 µm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.

[1]  J. Weissenrieder,et al.  Investigation of the surface phase diagram of Fe(110)-S , 2002 .

[2]  M. Pistol,et al.  Band-edge diagrams for strained III-V semiconductor quantum wells, wires, and dots , 2005, cond-mat/0501090.

[3]  Wei Zhang,et al.  Focal plane arrays based on quantum dot infrared photodetectors , 2005, SPIE Microtechnologies.

[4]  Alexander Soibel,et al.  Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths , 2010 .

[5]  V. A. Solov'ev,et al.  Room-temperature 3.9-4.3 μm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix , 2005 .

[6]  M. N. Kutty,et al.  Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection , 2011 .

[7]  V. A. Solov'ev,et al.  Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers , 2005 .

[8]  Antoni Rogalski,et al.  Material considerations for third generation infrared photon detectors , 2007 .

[9]  Yia-Chung Chang,et al.  Submonolayer quantum dot infrared photodetector , 2009 .

[10]  Manijeh Razeghi,et al.  Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes , 2011 .

[11]  Anthony Krier,et al.  Liquid phase epitaxial growth and morphology of InSb quantum dots , 2001 .

[12]  Sang Jun Lee,et al.  Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors , 2010 .

[13]  C. Jagadish,et al.  In/sub 0.5/Ga/sub 0.5/As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition , 2005, IEEE Electron Device Letters.

[14]  Jason M. Mumolo,et al.  MBE grown type-II MWIR and LWIR superlattice photodiodes , 2007 .

[15]  V. A. Solov'ev,et al.  InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications , 2009, Microelectron. J..

[16]  Subhananda Chakrabarti,et al.  Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors , 2004 .

[17]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[18]  G. R. Webster,et al.  Ultrafast depolarization of the fluorescence in a conjugated polymer , 2005 .

[19]  V. A. Solov'ev,et al.  Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes , 2008 .

[20]  A. Krier,et al.  Photoluminescence of epitaxial InAs produced by different growth methods , 1997 .

[21]  Alexander Soibel,et al.  High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) , 2012, Defense + Commercial Sensing.