Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2

We present the crystal structure, electronic structure, and transport properties of the material ${\mathrm{YbMnSb}}_{2}$, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a two-dimensional Fermi surface arising from a Dirac dispersion, consistent with the predictions of density-functional-theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting that scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.

[1]  D. Graf,et al.  Magnetotransport study of Dirac fermions in YbMnBi2 antiferromagnet , 2016 .

[2]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[3]  B. Sales,et al.  Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi 2 , 2014, 1407.6203.

[4]  W. Jeitschko,et al.  Ternary antimonides LnM1−xSb2 with Ln LaNd, Sm, Gd, Tb and M Mn, Co, Au, Zn, Cd , 1996 .

[5]  Phase analysis of quantum oscillations in graphite. , 2004, Physical review letters.

[6]  P. Manuel,et al.  Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi(2) (A = Sr, Ca) , 2013, 1311.0308.

[7]  L. Li,et al.  Landau level splitting in Cd3As2 under high magnetic fields , 2014, Nature Communications.

[8]  B Andrei Bernevig,et al.  Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. , 2016, Physical review letters.

[9]  P. Mandal,et al.  Probing the Fermi surface of three-dimensional Dirac semimetal Cd 3 As 2 through the de Haas-van Alphen technique , 2015, 1501.01175.

[10]  Y. Kim,et al.  Anisotropic Dirac fermions in a Bi square net of SrMnBi2. , 2011, Physical review letters.

[11]  D. Graf,et al.  Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2 , 2016, Scientific Reports.

[12]  Su-Yang Xu,et al.  Electron scattering in tantalum monoarsenide , 2017, 1702.01245.

[13]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[14]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[15]  J. Shim,et al.  Valley-polarized interlayer conduction of anisotropic Dirac fermions in SrMnBi2. , 2014, Physical review letters.

[16]  Claudia Felser,et al.  Berry phase and band structure analysis of the Weyl semimetal NbP , 2016, Scientific Reports.

[17]  Si Wu,et al.  Weyl semimetal with broken time reversal and inversion symmetries , 2012, 1201.3624.

[18]  Su-Yang Xu,et al.  Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi , 2015, 1502.03547.

[19]  Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd₃As₂. , 2014, Physical review letters.

[20]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[21]  Dirac and normal fermions in graphite and graphene: implications of the quantum Hall effect. , 2006, Physical review letters.

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Kefeng Wang,et al.  Multiband effects and possible Dirac states in LaAgSb2 , 2012, 1604.07819.

[24]  Z. Ristić,et al.  Observation of Dirac-like band dispersion in LaAgSb 2 , 2015, 1512.04187.

[25]  D. Graf,et al.  A magnetic topological semimetal Sr1-yMn1-zSb2 (y, z < 0.1). , 2017, Nature materials.

[26]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[27]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[28]  Rongying Jin,et al.  Nontrivial Berry phase in magnetic BaMnSb2 semimetal , 2017, Proceedings of the National Academy of Sciences.

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  Geunsik Lee,et al.  AEMnSb2 (AE=Sr, Ba): a new class of Dirac materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.