What does the cerebellum really do?

Summary The cerebellum is a large part of the brain in all vertebrates. In humans it constitutes about ten percent of the total brain weight, but the small granule cells of the cerebellar cortex are densely packed so that the cerebellum contains more neurons than all of the rest of the brain. Although it has a uniform cellular structure in mammals and birds, there is great variability in the relative size of its parts. In mammals the cerebellum can be roughly divided into three parasagittal divisions; a midline vermis (Latin: a worm) and two lateral hemispheres. The hemispheres are large in the higher primates and they are very large in the human brain. Because the cerebellar hemispheres are particularly large in humans and the higher primates, from time to time claims have been made that in addition to its role in motor control, the cerebellum is important for cognitive functions, such as learning, attention, and language. Here I review some of the evidence for and against that claim.

[1]  M. Glickstein,et al.  Visual Control of Movement: The Circuits Which Link Visual to Motor Areas of the Brain with Special Reference to the Visual Input to the Pons and Cerebellum , 1995 .

[2]  R. F. Thompson,et al.  Cerebellum: essential involvement in the classically conditioned eyelid response. , 1984, Science.

[3]  Mitchell Glickstein,et al.  Cerebellum lesions and finger use , 2008, The Cerebellum.

[4]  P. Strick,et al.  An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. , 2003, Journal of neurophysiology.

[5]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 67–81 , 1909 .

[6]  M Wiesendanger,et al.  Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: A multiple tracing study in macaque monkeys , 1994, The Journal of comparative neurology.

[7]  D Timmann,et al.  Preserved verb generation in patients with cerebellar atrophy , 2004, Neuropsychologia.

[8]  S. Petersen,et al.  Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. , 1992, Brain : a journal of neurology.

[9]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[10]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 51–66 , 1909 .

[11]  D. Robinson Adaptive gain control of vestibuloocular reflex by the cerebellum. , 1976, Journal of neurophysiology.

[12]  A. L. Leiner,et al.  Does the cerebellum contribute to mental skills? , 1986, Behavioral neuroscience.

[13]  M. Molinari,et al.  Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. , 1998, Brain : a journal of neurology.

[14]  E. Hirasaki,et al.  Volumetric comparisons in the cerebellar complex of anthropoids, with special reference to locomotor types. , 1997, American journal of physical anthropology.

[15]  L. Optican,et al.  Cerebellar-dependent adaptive control of primate saccadic system. , 1980, Journal of neurophysiology.

[16]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[17]  Jonas Persson,et al.  Large Scale Neurocognitive Networks Underlying Episodic Memory , 2000, Journal of Cognitive Neuroscience.

[18]  W. C. Herring Cerebellar Functions , 1912, The Psychological Clinic.

[19]  J Townsend,et al.  Impairment in shifting attention in autistic and cerebellar patients. , 1994, Behavioral neuroscience.

[20]  P. Flourens Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés , 1842 .

[21]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[22]  J. Lynch,et al.  Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. , 2006, Progress in brain research.

[23]  P. Thier,et al.  Saccadic Dysmetria and Adaptation after Lesions of the Cerebellar Cortex , 1999, The Journal of Neuroscience.

[24]  Mitchell Glickstein,et al.  Visual control of the arm, the wrist and the fingers: pathways through the brain , 1998, Neuropsychologia.