Calculating Risk Neutral Probabilities and Optimal Portfolio Policies in a Dynamic Investment Model with Downside Risk Control

This paper presents a method for solving multiperiod investment models with downside risk control characterized by the portfolio's worst outcome. The stochastic programming problem is decomposed into two subproblems: a nonlinear optimization model identifing the optimal terminal wealth and a stochastic linear programming model replicating the identified optimal portfolio. The replicating portfolio coincides with the optimal solution to the investor's problem if the market is frictionless. The multiperiod stochastic linear programming model is designed to test for the existence of arbitrage opportunities and its dual solutions generate all risk neutral probability measures.

[1]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[2]  W. V. Harlow Asset Allocation in a Downside-Risk Framework , 1991 .

[3]  William T. Ziemba,et al.  Concepts, Technical Issues, and Uses of the Russell-Yasuda Kasai Financial Planning Model , 1998, Oper. Res..

[4]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[5]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[6]  P. P. Boyle Worldwide Asset and Liability Modeling. Edited by William T. Ziemba and John M. Mulvey (Cambridge University Press, 1998) , 2000, British Actuarial Journal.

[7]  A. King,et al.  MARTINGALE PRICING MEASURES IN INCOMPLETE MARKETS VIA STOCHASTIC PROGRAMMING DUALITY IN THE DUAL OF L , 2001 .

[8]  William T. Ziemba,et al.  A Dynamic Asset Allocation Model with Downside Risk Control , 2000 .

[9]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[10]  Jeremy Evnine,et al.  Asset allocation and options , 1987 .

[11]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[12]  H. Soner,et al.  Optimal Replication of Contingent Claims Under Portfolio Constraints , 1996 .

[13]  Jak Sa Cvitani Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 1998 .

[14]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[15]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[16]  Sanford J. Grossman,et al.  Equilibrium Analysis of Portfolio Insurance , 1996 .

[17]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[18]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[19]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[20]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[21]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[22]  Pieter Klaassen,et al.  Comment on "Generating Scenario Trees for Multistage Decision Problems" , 2002, Manag. Sci..

[23]  William T. Ziemba,et al.  Formulation of the Russell-Yasuda Kasai Financial Planning Model , 1998, Oper. Res..

[24]  Andre Lucas,et al.  Arbitrage and sampling uncertainty in financial stochastic programming models , 1999 .

[25]  Michael J. Brennan,et al.  Optimal Portfolio Insurance , 1981, Journal of Financial and Quantitative Analysis.

[26]  D. Cuoco Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income , 1997 .

[27]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[28]  Robert J. Vanderbei,et al.  Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods , 2000, Math. Program..

[29]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[30]  Eduardo S. Schwartz,et al.  Strategic asset allocation , 1997 .

[31]  Jakša Cvitanić,et al.  HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH12 , 1996 .

[32]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[33]  W. Ziemba,et al.  The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming , 1994 .

[34]  Robert J. Elliott,et al.  Risk-Hedging in Real Estate Markets , 2009 .

[35]  Alan J. King,et al.  Arbitrage pricing of American contingent claims in incomplete markets - a convex optimization approach , 2004 .

[36]  Steven E. Shreve,et al.  A Duality Method for Optimal Consumption and Investment Under Short- Selling Prohibition. I. General Market Coefficients , 1992 .

[37]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[38]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[39]  R. Uppal,et al.  Optimal Replication of Options with Transactions Costs and Trading Restrictions , 1993, Journal of Financial and Quantitative Analysis.

[40]  Yonggan Zhao,et al.  A Dynamic Investment Model with Control on the Portfolio's Worst Case Outcome , 2003 .

[41]  Alan J. King,et al.  Duality and martingales: a stochastic programming perspective on contingent claims , 2002, Math. Program..

[42]  William T. Ziemba,et al.  A stochastic programming model using an endogenously determined worst case risk measure for dynamic asset allocation , 2001, Math. Program..

[43]  W. N. Street,et al.  Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/ Liability Management: a Synthesis , 1996 .

[44]  Dimitris Bertsimas,et al.  Hedging Derivative Securities and Incomplete Markets: An Formula-Arbitrage Approach , 2001, Oper. Res..

[45]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[46]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .