Computation of robust Pareto points

In a multiobjective optimisation problem the aim is to minimise k objective functions simultaneously. The solution of this problem is given by the set of optimal compromises – the so-called Pareto set which locally typically forms a (k − 1)-dimensional manifold. In this work we consider Multiobjective Optimisation Problems (MOPs) which are parameter-dependent. Our aim is to identify 'robust' Pareto points. These are points which hardly vary under the variation of the system parameter. For this we employ path following techniques in order to identify curves consisting of those specific points.

[1]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[2]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[3]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[4]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[5]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[6]  Michael Dellnitz,et al.  A new approach for online multiobjective optimization of mechatronic systems , 2008, International Journal on Software Tools for Technology Transfer.

[7]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[8]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[9]  A. Hohmann,et al.  Numerical Analysis in Modern Scientific Computing: An Introduction , 2003 .

[10]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[11]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[12]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[13]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[14]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[15]  Jürgen Teich,et al.  Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques , 2003, EMO.

[16]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[17]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[18]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[19]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[20]  Peter Deuflhard,et al.  Numerical Analysis in Modern Scientific Computing , 2003 .

[21]  Boyang. Qu Evolutionary algorithms for solving multi-modal and multi-objective optimization problems , 2011 .

[22]  Kalyanmoy Deb,et al.  Evolutionary multi-criterion optimization , 2010, GECCO '10.

[23]  Lishan Kang,et al.  A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[25]  Oliver Schütze,et al.  A New Data Structure for the Nondominance Problem in Multi-objective Optimization , 2003, EMO.