Multi-objective Parameter Synthesis in Probabilistic Hybrid Systems

Technical systems interacting with the real world can be elegantly modelled using probabilistic hybrid automata (PHA). Parametric probabilistic hybrid automata are dynamical systems featuring hybrid discrete-continuous dynamics and parametric probabilistic branching, thereby generalizing PHA by capturing a family of PHA within a single model. Such system models have a broad range of applications, from control systems over network protocols to biological components. We present a novel method to synthesize parameter instances (if such exist) of PHA satisfying a multi-objective bounded horizon specification over expected rewards. Our approach combines three techniques: statistical model checking of model instantiations, a symbolic version of importance sampling to handle the parametric dependence, and SAT-modulo-theory solving for finding feasible parameter instances in a multi-objective setting. The method provides statistical guarantees on the synthesized parameter instances. To illustrate the practical feasibility of the approach, we present experiments showing the potential benefit of the scheme compared to a naive parameter exploration approach.

[1]  Robert E. Kass,et al.  Importance sampling: a review , 2010 .

[2]  Joost-Pieter Katoen,et al.  Approximate Parameter Synthesis for Probabilistic Time-Bounded Reachability , 2008, 2008 Real-Time Systems Symposium.

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  Martin Fränzle,et al.  Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure , 2007, J. Satisf. Boolean Model. Comput..

[5]  Necmiye Ozay,et al.  Abstraction, discretization, and robustness in temporal logic control of dynamical systems , 2014, HSCC.

[6]  Nicola Paoletti,et al.  Precise Parameter Synthesis for Stochastic Biochemical Systems , 2014, CMSB.

[7]  Yishay Mansour,et al.  Learning Bounds for Importance Weighting , 2010, NIPS.

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  Martin Fränzle,et al.  Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains , 2014, International Journal on Software Tools for Technology Transfer.

[10]  Conrado Daws Symbolic and Parametric Model Checking of Discrete-Time Markov Chains , 2004, ICTAC.

[11]  Holger Hermanns,et al.  Symbolic Partition Refinement with Dynamic Balancing of Time and Space , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[12]  Jeremy Sproston Decidable Model Checking of Probabilistic Hybrid Automata , 2000, FTRTFT.

[13]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[14]  Martin Fränzle,et al.  Analysis of Hybrid Systems Using HySAT , 2008, Third International Conference on Systems (icons 2008).

[15]  Jeremy Sproston,et al.  Model Checking for Probabilistic Timed Systems , 2004, Validation of Stochastic Systems.

[16]  Lijun Zhang,et al.  Probabilistic reachability for parametric Markov models , 2010, International Journal on Software Tools for Technology Transfer.

[17]  Håkan L. S. Younes,et al.  Numerical vs. statistical probabilistic model checking , 2006, International Journal on Software Tools for Technology Transfer.

[18]  Edmund M. Clarke,et al.  Parameter Synthesis for Cardiac Cell Hybrid Models Using δ-Decisions , 2014, CMSB.

[19]  Alberto Griggio,et al.  Parameter synthesis with IC3 , 2013, 2013 Formal Methods in Computer-Aided Design.

[20]  Andrea Maggiolo-Schettini,et al.  Parametric probabilistic transition systems for system design and analysis , 2007, Formal Aspects of Computing.

[21]  Nils Jansen,et al.  Accelerating Parametric Probabilistic Verification , 2014, QEST.

[22]  Alberto L. Sangiovanni-Vincentelli,et al.  Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties , 2013, CAV.

[23]  James Worrell,et al.  LTL Model Checking of Interval Markov Chains , 2013, TACAS.

[24]  Edmund M. Clarke,et al.  Parameter Synthesis for Cardiac Cell Hybrid Models Using Delta-Decisions , 2014, ArXiv.

[25]  Lijun Zhang,et al.  Synthesis for PCTL in Parametric Markov Decision Processes , 2011, NASA Formal Methods.

[26]  Sriram Sankaranarayanan,et al.  Statistically Sound Verification and Optimization for Complex Systems , 2014, ATVA.