Performance of computationally intensive parameter sweep applications on Internet-based Grids of computers: the mapping of molecular potential energy hypersurfaces: Research Articles

This work focuses on the use of computational Grids for processing the large set of jobs arising in parameter sweep applications. In particular, we tackle the mapping of molecular potential energy hypersurfaces. For computationally intensive parameter sweep problems, performance models are developed to compare the parallel computation in a multiprocessor system with the computation on an Internet-based Grid of computers. We find that the relative performance of the Grid approach increases with the number of processors, being independent of the number of jobs. The experimental data, obtained using electronic structure calculations, fit the proposed performance expressions accurately. To automate the mapping of potential energy hypersurfaces, an application based on GRID superscalar is developed. It is tested on the prototypical case of the internal dynamics of acetone. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Anthony T. Chronopoulos,et al.  Distributed loop‐scheduling schemes for heterogeneous computer systems , 2006, Concurr. Comput. Pract. Exp..

[2]  Fumihiko Ino,et al.  LogGPS: a parallel computational model for synchronization analysis , 2001, PPoPP '01.

[3]  Y. Smeyers,et al.  An ab initio structural and spectroscopic study of acetone—An analysis of the far infrared torsional spectra of acetone‐h6 and ‐d6 , 1993 .

[4]  C. Muñoz-Caro,et al.  Wagging and torsion vibronic structure in the T1 .rarw. S0 electronic spectrum of acetaldehyde , 1994 .

[5]  CONSTANTINE D. POLYCHRONOPOULOS,et al.  Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel Supercomputers , 1987, IEEE Transactions on Computers.

[6]  Anthony T. Chronopoulos,et al.  A class of loop self-scheduling for heterogeneous clusters , 2001, Proceedings 42nd IEEE Symposium on Foundations of Computer Science.

[7]  R. Nelson,et al.  Microwave spectrum, structure, and barrier to internal rotation of acetone ☆ , 1965 .

[8]  Eduardo Huedo,et al.  Experiences on adaptive grid scheduling of parameter sweep applications , 2004, 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2004. Proceedings..

[9]  Ramesh Subramonian,et al.  LogP: a practical model of parallel computation , 1996, CACM.

[10]  D. Papoušek,et al.  Vibration-Rotational Spectroscopy and Molecular Dynamics: Advances in Quantum Chemical and Spectroscopical Studies of Molecular Structures and Dynamics , 1997 .

[11]  P. Groner Experimental two-dimensional torsional potential function for the methyl internal rotors in acetone , 2000 .

[12]  Francine Berman,et al.  Heuristics for scheduling parameter sweep applications in grid environments , 2000, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556).

[13]  Rong Ge,et al.  Predicting and Evaluating Distributed Communication Performance , 2004, Proceedings of the ACM/IEEE SC2004 Conference.

[14]  Mary K. Vernon,et al.  LoPC: modeling contention in parallel algorithms , 1997, PPOPP '97.

[15]  Y. Smeyers,et al.  Internal dynamics of nonrigid molecules. I. Application to acetone , 1981 .

[16]  A. G. Ozkabak,et al.  Skeletal flexing during methyl rotation in small dimethyl molecules , 1991 .

[17]  C. Muñoz-Caro,et al.  Theoretical study of the effect of torsional anharmonicity on the thermodynamic properties of methanol , 1997 .

[18]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[19]  Gamil A. Guirgis,et al.  Analysis of torsional spectra of molecules with two internal C3v rotors. XXIV. High resolution far infrared spectra of acetone‐d0, ‐d3, and ‐d6 , 1987 .

[20]  David Abramson,et al.  Applying Grid Computing to the Parameter Sweep of a Group Difference Pseudopotential , 2004, International Conference on Computational Science.

[21]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[22]  Edward A. Lee,et al.  CONCURRENCY AND COMPUTATION : PRACTICE AND EXPERIENCE Concurrency Computat , 2006 .

[23]  R. F. Freund,et al.  Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems , 1999, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99).

[24]  Jalel Rejeb,et al.  A detailed MPI communication model for distributed systems , 2006, Future Gener. Comput. Syst..

[25]  Edith Schonberg,et al.  Factoring: a method for scheduling parallel loops , 1992 .

[26]  Péter Kacsuk,et al.  P-GRADE: A Grid Programming Environment , 2003, Journal of Grid Computing.

[27]  C. Muñoz-Caro,et al.  Three-Dimensional Vibrational Study of the Coupling between Methyl Torsion and the Molecular Frame in the S0 State of Acetaldehyde , 1995 .

[28]  Csaba Andras Moritz,et al.  LoGPC: Modeling Network Contention in Message-Passing Programs , 2001, IEEE Trans. Parallel Distributed Syst..

[29]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[30]  L.M. Ni,et al.  Trapezoid Self-Scheduling: A Practical Scheduling Scheme for Parallel Compilers , 1993, IEEE Trans. Parallel Distributed Syst..

[31]  Daniel Grosu,et al.  Analysis of Performance Behaviors of Grid Connected Clusters , 2005 .

[32]  C. Muñoz-Caro,et al.  Customizing clustering computing for a computational chemistry environment. The case of the DBO-83 nicotinic analgesic , 2005 .

[33]  I. Foster,et al.  The grid: computing without bounds. , 2003, Scientific American.

[34]  Jesús Labarta,et al.  Programming Grid Applications with GRID Superscalar , 2003, Journal of Grid Computing.

[35]  J. D. Swalen,et al.  Internal Rotation in Molecules with Two Internal Rotors: Microwave Spectrum of Acetone , 1959 .

[36]  Chris J. Scheiman,et al.  LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for parallel computation , 1995, SPAA '95.

[37]  Ian T. Foster,et al.  The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Int. J. High Perform. Comput. Appl..

[38]  F. Jensen Introduction to Computational Chemistry , 1998 .