Cochlear Micromechanics and Macromechanics

The main task of the mammalian cochlea is to analyze sound in terms of its intensity, timing, and frequency content. To achieve this, sound in air is “matched” acoustically to the denser water medium within the cochlea by the middle ear, efficiently producing pressure fluctuations in the cochlear fluids and vibration of the ribbonlike basilar membrane (BM) and the sensory organ of Corti (OC) perched upon it. The vibration of the cochlear partition (BM and OC) normally takes the form of waves or ripples that travel away from the stapes and toward the cochlear apex (See Fig. 1.5, Dallos, Chapter 1). For a pure-tone stimulus, the wave grows as it travels, reaching a maximum at a position known as the wave’s characteristic place, and then collapses abruptly so that no vibration exists beyond a cochlear position known as the wave’s cutoff region. The characteristic place and cutoff region are positioned along the cochlear length according to a place-frequency map: high frequencies toward the cochlear base, closer to the stapes, and low frequencies closer to the cochlear apex. The vibration of the BM and OC relative to the surrounding bony structures is known as macromechanical vibration, while the complex vibration of the parts of the OC relative to one another is known as micromechanical vibration. It is worth stressing here that both these vibrations are normally of atomic or at most molecular dimensions, comparable with the width of a cell membrane (less than 10 nm), and they are not independent: not only does macromechanical vibration of the BM “drive” the micromechanical vibration of the OC, but the micromechanics greatly affects the macromechanics.

[1]  R. A. Schmiedt,et al.  Acoustic injury and the physiology of hearing. , 1984, The Journal of the Acoustical Society of America.

[2]  W. T. Peake,et al.  Input impedance of the cochlea in cat. , 1982, The Journal of the Acoustical Society of America.

[3]  V. Nedzelnitsky,et al.  Sound pressures in the basal turn of the cat cochlea. , 1980, The Journal of the Acoustical Society of America.

[4]  B. M. Johnstone,et al.  The alteration of the vibration of the basilar membrane produced by loud sound , 1984, Hearing Research.

[5]  G. K. Yates,et al.  Basilar membrane measurements and the travelling wave , 1986, Hearing Research.

[6]  B. M. Johnstone,et al.  Basilar Membrane Vibration Examined with the M�ssbauer Technique , 1967, Science.

[7]  B. M. Johnstone,et al.  Acoustic trauma: single neuron basis for the "half-octave shift". , 1981, The Journal of the Acoustical Society of America.

[8]  C. Daniel Geisler,et al.  Saturation of outer hair cell receptor currents causes two-tone suppression , 1990, Hearing Research.

[9]  E. Evans,et al.  The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibres in the cat , 1982, The Journal of physiology.

[10]  E. Zwicker,et al.  A model describing nonlinearities in hearing by active processes with saturation at 40 dB , 1979, Biological Cybernetics.

[11]  M. Ruggero,et al.  Chinchilla auditory-nerve responses to low-frequency tones. , 1983, The Journal of the Acoustical Society of America.

[12]  J. Zwislocki,et al.  Tectorial membrane I: Static mechanical properties in vivo , 1988, Hearing Research.

[13]  C. Steele,et al.  Effect of coiling in a cochlear model. , 1985, The Journal of the Acoustical Society of America.

[14]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[15]  B. Moore Frequency Selectivity in Hearing , 1987 .

[16]  Richard R. Fay,et al.  Clinical Aspects of Hearing , 1996, Springer Handbook of Auditory Research.

[17]  B. M. Johnstone,et al.  Origin of summating potential. , 1966, The Journal of the Acoustical Society of America.

[18]  Peter Dallos,et al.  COCHLEAR POTENTIALS AND COCHLEAR MECHANICS , 1973 .

[19]  C D Geisler,et al.  Model of the displacement between opposing points on the tectorial membrane and reticular lamina. , 1967, The Journal of the Acoustical Society of America.

[20]  B. M. Johnstone,et al.  State of stress within the basilar membrane: a re-evaluation of the membrane misnomer , 1983, Hearing Research.

[21]  E. M. Burns,et al.  Chaotic Dynamics of Otoacoustic Emissions , 1990 .

[22]  A J Hudspeth,et al.  Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P M Sellick,et al.  A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. , 1983, The Journal of the Acoustical Society of America.

[24]  Hermann von Helmholtz,et al.  On the Sensations of Tone , 1954 .

[25]  Graeme K. Yates,et al.  Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma , 1989, Hearing Research.

[26]  D. Robertson Cochlear Neurons: Frequency Selectivity Altered by Perilymph Removal , 1974, Science.

[27]  E F Evans,et al.  The frequency response and other properties of single fibres in the guinea‐pig cochlear nerve , 1972, The Journal of physiology.

[28]  Mario A. Ruggero,et al.  Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration , 1991, Hearing Research.

[29]  Iain G. Main,et al.  Vibrations and Waves in Physics , 1985 .

[30]  A. Hudspeth,et al.  Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. J. Hudspeth,et al.  Auditory illusions and the single hair cell , 1993, Nature.

[32]  D. T. Kemp,et al.  Properties of the generator of stimulated acoustic emissions , 1980, Hearing Research.

[33]  R. Fay,et al.  Hearing in Vertebrates: A Psychophysics Databook , 1988 .

[34]  M. Charles Liberman,et al.  Chronic ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates , 1987, Hearing Research.

[35]  D P Corey,et al.  Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. F. Weiss,et al.  Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes , 1982, Hearing Research.

[37]  Sharp mechanical tuning in a cochlear model without negative damping. , 1988, The Journal of the Acoustical Society of America.

[38]  L. Rayleigh,et al.  The theory of sound , 1894 .

[39]  B. Moore,et al.  Auditory Frequency Selectivity , 1986, Nato ASI Series.

[40]  E. Wever,et al.  The Reptile Ear , 2019 .

[41]  Gerald M. Edelman,et al.  Auditory function : neurobiological bases of hearing , 1988 .

[42]  Glen K. Martin,et al.  Distortion Product Emissions in Humans , 1990, The Annals of otology, rhinology & laryngology. Supplement.

[43]  R. Fay,et al.  Hearing by Bats , 1995, Springer Handbook of Auditory Research.

[44]  B. M. Johnstone,et al.  Aberrant tonotopic organization in the inner ear damaged by kanamycin. , 1979, The Journal of the Acoustical Society of America.

[45]  P Dallos,et al.  Nonlinearities in cochlear receptor potentials and their origins. , 1989, The Journal of the Acoustical Society of America.

[46]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[47]  A J Hudspeth,et al.  The transduction channel of hair cells from the bull‐frog characterized by noise analysis. , 1986, The Journal of physiology.

[48]  R. A. Schmiedt Boundaries of two-tone rate suppression of cochlear-nerve activity , 1982, Hearing Research.

[49]  Peter Dallos,et al.  Cochlear Inner and Outer Hair Cells: Functional Differences , 1972, Science.

[50]  A. Flock,et al.  Transducing mechanisms in the lateral line canal organ receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[51]  M. Ruggero,et al.  Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Eberhard Zwicker,et al.  A hardware cochlear nonlinear preprocessing model with active feedback. , 1986, The Journal of the Acoustical Society of America.

[53]  Joseph Santos-Sacchi,et al.  AC receptor potentials from hair cells in the low-frequency region of the guinea pig cochlea , 1983 .

[54]  M. Sachs,et al.  Two-tone inhibition in auditory-nerve fibers. , 1968, The Journal of the Acoustical Society of America.

[55]  D Robertson,et al.  Primary auditory neurons: nonlinear responses altered without changes in sharp tuning. , 1981, The Journal of the Acoustical Society of America.

[56]  W. T. Peake,et al.  Middle-ear characteristics of anesthetized cats. , 1967, The Journal of the Acoustical Society of America.

[57]  G. K. Yates,et al.  Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions , 1990, Hearing Research.

[58]  S M Khanna,et al.  Basilar membrane tuning in the cat cochlea. , 1982, Science.

[59]  G. K. Yates,et al.  The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig , 1989, Hearing Research.

[60]  D Robertson,et al.  Tuning in the mammalian cochlea. , 1988, Physiological reviews.

[61]  Stephen T. Neely,et al.  An active cochlear model showing sharp tuning and high sensitivity , 1983, Hearing Research.

[62]  Single auditory nerve fiber and action potential latencies in normal and noise-treated chinchillas , 1979, Hearing Research.

[63]  Mechanical Correlates of Noise Trauma in the Mammalian Cochlea , 1986 .

[64]  Thomas Gold,et al.  Hearing. II. The Physical Basis of the Action of the Cochlea , 1948, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[65]  J. Nedzelski Advances in Audiology , 1985 .

[66]  Glen K. Martin,et al.  Otoacoustic Emissions: Animal Models and Clinical Observations , 1996 .

[67]  M. Ruggero SUR LES DELAIS COCHLEAIRES ET LES ONDES PROPAGEES: COMMENTAIRE SUR 'EXPERIMENTAL LOOK AT COCHLEAR MECHANICS' (APPROCHE EXPERIMENTALE DE LA MECANIQUE COCHLEAIRE) , 1994 .

[68]  J. P. Wilson,et al.  Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus , 1980, Hearing Research.

[69]  B. M. Johnstone,et al.  The peripheral auditory apparatus , 1972, Quarterly Reviews of Biophysics.

[70]  P. Dallos Cochlear neurobiology: Some key experiments and concepts of the past two decades , 1988 .

[71]  L. Voldřich,et al.  Mechanical properties of basilar membrane. , 1978, Acta oto-laryngologica.

[72]  B. M. Johnstone,et al.  The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion , 1984, Hearing Research.

[73]  M A Ruggero,et al.  Cochlear microphonics and the initiation of spikes in the auditory nerve: correlation of single-unit data with neural and receptor potentials recorded from the round window. , 1986, The Journal of the Acoustical Society of America.

[74]  G. Long The microstructure of quiet and masked thresholds , 1984, Hearing Research.

[75]  P Dallos,et al.  Stereocilia displacement induced somatic motility of cochlear outer hair cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[76]  F. McConnel,et al.  The Auditory Periphery , 1975 .

[77]  J J Zwislocki,et al.  Tectorial membrane: a possible effect on frequency analysis in the cochlea. , 1979, Science.

[78]  W. S. Rhode,et al.  Cochlear partition vibration--recent views. , 1980, The Journal of the Acoustical Society of America.

[79]  Roger P. Hamernik,et al.  Basic and Applied Aspects of Noise-Induced Hearing Loss , 1986, NATO ASI Series.

[80]  R. L. Smith,et al.  Intracellular and extracellular responses in the organ of Corti of the gerbil , 1982, Hearing Research.

[81]  L. Robles,et al.  Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve. , 1986, The Journal of the Acoustical Society of America.

[82]  P M Sellick,et al.  Intracellular studies of hair cells in the mammalian cochlea. , 1978, The Journal of physiology.

[83]  R A Levine,et al.  Auditory-Nerve Activity in Cats Exposed to Ototoxic Drugs and High-Intensity Sounds , 1976, The Annals of otology, rhinology, and laryngology.

[84]  B. Lonsbury-Martin,et al.  Acoustic distortion products in rabbit ear canal. I. Basic features and physiological vulnerability , 1987, Hearing Research.

[85]  P Dallos,et al.  Response characteristics of mammalian cochlear hair cells , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  J F Ashmore,et al.  Ionic currents of outer hair cells isolated from the guinea‐pig cochlea. , 1992, The Journal of physiology.

[87]  W. D. Ward Tonal Monaural Diplacusis , 1955 .

[88]  M G Evans,et al.  Activation and adaptation of transducer currents in turtle hair cells. , 1989, The Journal of physiology.

[89]  D. Lim,et al.  Cochlear anatomy related to cochlear micromechanics. A review. , 1980, The Journal of the Acoustical Society of America.

[90]  Jozef J. Zwislocki,et al.  Tectorial membrane II: Stiffness measurements in vivo , 1989, Hearing Research.

[91]  M Kössl,et al.  Nonlinear mechanical responses of mouse cochlear hair bundles , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  P Dallos,et al.  Low-frequency auditory characteristics: Species dependence. , 1970, The Journal of the Acoustical Society of America.

[93]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[94]  F. Mammano,et al.  Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.

[95]  B. M. Johnstone,et al.  Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea , 1980, Hearing Research.

[96]  M. Ruggero,et al.  Cochlear delays and traveling waves: comments on 'Experimental look at cochlear mechanics'. , 1994, Audiology : official organ of the International Society of Audiology.

[97]  Hendrikus Duifhuis,et al.  Biophysics of Hair Cell Sensory Systems , 1993 .

[98]  B. M. Johnstone,et al.  Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound , 1982, Hearing Research.

[99]  P. Sellick,et al.  The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea , 1980, Hearing Research.

[100]  J. Ashmore,et al.  Forward and reverse transduction in the mammalian cochlea. , 1990, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[101]  R. Patuzzi,et al.  The influence of Mossbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane , 1983, Hearing Research.

[102]  Thomas F. Weiss,et al.  Hydrodynamic forces on hair bundles at high frequencies , 1990, Hearing Research.

[103]  S. Neely,et al.  A model for active elements in cochlear biomechanics. , 1986, The Journal of the Acoustical Society of America.

[104]  John J. Guinan,et al.  Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions , 1988, Hearing Research.

[105]  Ian M. Winter,et al.  Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range , 1990, Hearing Research.

[106]  R Probst,et al.  A review of otoacoustic emissions. , 1991, The Journal of the Acoustical Society of America.

[107]  M. Ruggero Systematic errors in indirect estimates of basilar membrane travel times. , 1980, The Journal of the Acoustical Society of America.

[108]  M A Viergever Basilar membrane motion in a spiral-shaped cochlea. , 1978, The Journal of the Acoustical Society of America.

[109]  H. Spoendlin Innervation patterns in the organ of corti of the cat. , 1969, Acta oto-laryngologica.

[110]  E F Evans,et al.  Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements , 1975, Science.

[111]  J. Allen,et al.  Cochlear micromechanics--a physical model of transduction. , 1980, The Journal of the Acoustical Society of America.

[112]  E. ELLIOTT,et al.  A Ripple Effect in the Audiogram , 1958, Nature.

[113]  C. Fernández,et al.  Evoked electrical activity in the auditory nervous system , 1978 .

[114]  Shyam M. Khanna,et al.  Frequency-specific position shift in the guinea pig organ of Corti , 1991, Neuroscience Letters.

[115]  Mario A. Ruggero,et al.  Basilar membrane responses to clicks , 1992 .

[116]  J. L. Goldstein,et al.  Neural correlates of the aural combination tone 2f 1 - f 2 , 1968 .

[117]  E. de Boer,et al.  Wave propagation and dispersion in the cochlea , 1984, Hearing Research.

[118]  G. K. Yates,et al.  The low-frequency response of inner hair cells in the guinea pig cochlea: Implications for fluid coupling and resonance of the stereocilia , 1987, Hearing Research.

[119]  Guido F. Smoorenburg,et al.  Combination Tones and Their Origin , 1972 .

[120]  Aage R. Møller,et al.  Basic Mechanisms in Hearing , 1973 .

[121]  D. Mountain,et al.  In vivo measurement of basilar membrane stiffness. , 1991, The Journal of the Acoustical Society of America.

[122]  M. Kössl,et al.  Cochlear Structure and Function in Bats , 1995 .

[123]  P M Zurek Acoustic emissions from the ear: a summary of results from humans and animals. , 1985, The Journal of the Acoustical Society of America.

[124]  I. Russell,et al.  Outer hair cells in the mammalian cochlea and noise-induced hearing loss , 1985, Nature.

[125]  E. Lepage Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. , 1987, The Journal of the Acoustical Society of America.

[126]  L. Robles,et al.  Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.

[127]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[128]  I. Tasaki,et al.  Nerve impulses in individual auditory nerve fibers of guinea pig. , 1954, Journal of neurophysiology.

[129]  Alfred L. Nuttall,et al.  Inner hair cell responses to the velocity of basilar membrane motion in the guinea pig , 1981, Brain Research.

[130]  A. Dancer,et al.  Intracochlear sound pressure measurements in guinea pigs , 1980, Hearing Research.

[131]  S. Khanna,et al.  Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation , 1993, Pflügers Archiv.

[132]  D. Mountain,et al.  Low-frequency responses of inner hair cells: evidence for a mechanical origin of peak splitting , 1989, Hearing Research.

[133]  Dennis McFadden,et al.  The Curious Half-Octave Shift: Evidence for a Basalward Migration of the Traveling-Wave Envelope with Increasing Intensity , 1986 .

[134]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[135]  William S. Rhode,et al.  AN INVESTIGATION OF POST-MORTEM COCHLEAR MECHANICS USING THE MÖSSBAUER EFFECT , 1973 .

[136]  S. M. Khanna,et al.  The tuned displacement response of the hearing organ is generated by the outer hair cells , 1992, Neuroscience.

[137]  D. O. Kim Cochlear mechanics: Implications of electrophysiological and acoustical observations , 1980, Hearing Research.

[138]  A. J. Hudspeth,et al.  Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the Bullfrog's saccular hair cell , 1988, Neuron.

[139]  P M Sellick,et al.  Low‐frequency characteristics of intracellularly recorded receptor potentials in guinea‐pig cochlear hair cells. , 1983, The Journal of physiology.

[140]  J R Johnstone,et al.  Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. , 1975, The Journal of the Acoustical Society of America.

[141]  William Bialek,et al.  The Vertebrate Inner Ear , 1985 .

[142]  Jont B. Allen,et al.  Micromechanical Models of the Cochlea , 1992 .

[143]  B. M. Johnstone,et al.  Single auditory neuron response during acute acoustic trauma , 1980, Hearing Research.

[144]  D. Mountain,et al.  Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. , 1980, Science.

[145]  W. S. Rhode,et al.  Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts , 1992, Hearing Research.

[146]  Mario A. Ruggero,et al.  Two-tone distortion in the basilar membrane of the cochlea , 1991, Nature.

[147]  Peter Dallos,et al.  Neurobiology of cochlear inner and outer hair cells: intracellular recordings , 1986, Hearing Research.

[148]  P. Santi,et al.  Morphological alteration of the stria vascularis after administration of the diuretic bumetanide. , 1979, Acta oto-laryngologica.

[149]  Anthony W. Gummer,et al.  Direct measurement of basilar membrane stiffness in the guinea pig , 1981 .

[150]  C. Daniel Geisler,et al.  A model of the effect of outer hair cell motility on cochlear vibrations , 1986, Hearing Research.

[151]  B. M. Johnstone,et al.  Comparison between the tuning properties of inner hair cells and basilar membrane motion , 1983, Hearing Research.

[152]  G. Wilkinson The Theory of Hearing , 1925, Nature.

[153]  G. K. Yates,et al.  Outer hair cell receptor current and sensorineural hearing loss , 1989, Hearing Research.

[154]  N Suga,et al.  Properties of ‘two‐tone inhibition’ in primary auditory neurones , 1971, The Journal of physiology.

[155]  Peter Dallos,et al.  Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells , 1991, Nature.

[156]  Ian M. Winter,et al.  Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres , 1990, Hearing Research.