Towards Unifying Perception and Cognition : The Ubiquity of Trees

Is there a single mechanism that underlies all perceptual and cognitive processing? This paper aims to solve a small part of Newell's challenge (A. Newell 1990, Unified Theories of Cognition , Harvard University Press) and proposes a model that unifies three different modalities: language, music and problem-solving. In doing so, we will focus on tree structures. Trees are ubiquitous in modeling high-level perception and cognition and have been used to represent grouping structures in linguistic, musical and visual perception and deductive structures in reasoning, learning and problem solving. We will show that an instantiation of the Data-Oriented Parsing (DOP) framework can accurately predict the correct tree structure for linguistic utterances, musical pieces and physics problems. The key idea of the DOP framework is that new input is analyzed by combining subtrees from a representative corpus of previous trees. While the labeling of the trees and the details of the combination operation may differ across the modalities, we argue that there is one model for predicting the tree that humans come up with. We report on experiments with manually annotated corpora for the three modalities, showing that the best performing model is the one which takes into account subtrees of arbitrary size and which selects the most probable tree from among the shortest derivations of an input.

[1]  Rens Bod,et al.  Beyond Grammar: An Experience-Based Theory of Language , 1998 .

[2]  David Chiang,et al.  Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar , 2000, ACL.

[3]  F. van der Velde,et al.  Neural blackboard architectures of combinatorial structures in cognition , 2006, Behavioral and Brain Sciences.

[4]  Christopher Raphael,et al.  Automatic Segmentation of Acoustic Musical Signals Using Hidden Markov Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[6]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[7]  K. Holyoak,et al.  The Cambridge handbook of thinking and reasoning , 2005 .

[8]  Barbara Tversky,et al.  Visuospatial Reasoning , 2004 .

[9]  J. Bresnan Lexical-Functional Syntax , 2000 .

[10]  H. Kyburg,et al.  How the laws of physics lie , 1984 .

[11]  Kurt VanLehn,et al.  Analogy Events: How Examples are Used During Problem Solving , 1998, Cogn. Sci..

[12]  Khalil Sima'an,et al.  A memory-based model of syntactic analysis: data-oriented parsing , 1999, J. Exp. Theor. Artif. Intell..

[13]  Andy Way A hybrid architecture for robust MT using LFG-DOP , 1999, J. Exp. Theor. Artif. Intell..

[14]  Rens Bod,et al.  A DOP Model for Semantic Interpretation , 1997, ACL.

[15]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[16]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[17]  Khalil Sima'an,et al.  Data-Oriented Parsing , 2003 .

[18]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[19]  Refractor Vision , 2000, The Lancet.

[20]  Daniel Kersten,et al.  High-level Vision as Statistical Inference , 1999 .

[21]  Kenneth Ward Church,et al.  PRELIMINARY ANALYSIS OF A BREADTH-FIRST PARSING ALGORITHM: THEORETICAL AND EXPERIMENTAL RESULTS , 1987 .

[22]  Adele E. Goldberg Constructions: a new theoretical approach to language , 2003, Trends in Cognitive Sciences.

[23]  Jaime G. Carbonell,et al.  Derivational Analogy in PRODIGY: Automating Case Acquisition, Storage, and Utilization , 1993, Machine Learning.

[24]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[25]  H. C. Longuet-Higgins,et al.  The Rhythmic Interpretation of Monophonic Music , 1984 .

[26]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[27]  Simon D. Levy,et al.  Compositional Connectionism in Cognitive Science , 2004 .

[28]  Emilios Cambouropoulos,et al.  Musical Rhythm: A Formal Model for Determining Local Boundaries, Accents and Metre in a Melodic Surface , 1996, Joint International Conference on Cognitive and Systematic Musicology.

[29]  Peter A. van der Helm,et al.  Simplicity versus likelihood in visual perception: from surprisals to precisals. , 2000 .

[30]  W. Bechtel,et al.  A companion to cognitive science , 1999 .

[31]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[32]  Rens Bod An efficient implementation of a new DOP model , 2003, EACL.

[33]  Daniel H. Younger,et al.  Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..

[34]  Rens Bod Exemplar-Based Explanation , 2005 .

[35]  Joshua Goodman Efficient Algorithms for Parsing the DOP Model , 1996, EMNLP.

[36]  Ivan A. Sag,et al.  Syntactic Theory: A Formal Introduction , 1999, Computational Linguistics.

[37]  U. Grenander Elements of Pattern Theory , 1996 .

[38]  L.W.M. Bod,et al.  Grammaticality, Robustness and specificity in a Probabilistic Approach to Lexical Functional Analysis , 1998 .

[39]  H. C. Longuet-Higgins,et al.  Perception of melodies , 1976, Nature.

[40]  Belinda Thom,et al.  Evaluating Melodic Segmentation , 2002, ICMAI.

[41]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[42]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[43]  Rens Bod,et al.  A Probabilistic Corpus-Driven Model for Lexical-Functional Analysis , 1998, ACL.

[44]  David Mumford,et al.  The Dawning of the Age of Stochasticity , 2000 .

[45]  Lyn Frazier,et al.  ON COMPREHENDING SENTENCES: SYNTACTIC PARSING STRATEGIES. , 1979 .

[46]  Rens Bod,et al.  A Unified Model of Structural Organization in Language and Music , 2002, J. Artif. Intell. Res..

[47]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[48]  Michael Leyton,et al.  A generative theory of shape , 2004, Proceedings Shape Modeling Applications, 2004..

[49]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[50]  Zoltán Juhász Segmentation of Hungarian Folk Songs Using an Entropy-Based Learning System , 2004 .

[51]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[52]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[53]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[54]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[55]  A. Fine,et al.  The Dappled World , 2000 .

[56]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[57]  P. Kitcher Explanatory unification and the causal structure of the world , 1989 .

[58]  Rens Bod,et al.  Limits to Universality in Segmentation of Simple Melodies , 2005 .

[59]  Rens Bod,et al.  Memory-Based Models of Melodic Analysis: Challenging the Gestalt Principles , 2002 .

[60]  Rens Bod,et al.  A DOP model for lexical-functional grammar , 2003 .

[61]  Rens Bod,et al.  Modelling Scientific Problem Solving by DOP , 2005 .

[62]  Andy Way,et al.  Seeing the wood for the trees: data-oriented translation , 2003, MTSUMMIT.

[63]  Jaime G. Carbonell,et al.  Derivational analogy: a theory of reconstructive problem solving and expertise acquisition , 1993 .

[64]  Khalil Sima'an,et al.  Building a tree-bank of modern hebrew text , 2001 .

[65]  Herbert A. Simon,et al.  Complexity and the representation of patterned sequences of symbols. , 1972 .

[66]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[67]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[68]  Andy Way,et al.  Data-oriented parsing and the Penn Chinese treebank , 2004 .

[69]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[70]  Eugene Charniak,et al.  Statistical Techniques for Natural Language Parsing , 1997, AI Mag..

[71]  Rens Bod,et al.  Context-sensitive spoken dialogue processing with the DOP model , 1999, Natural Language Engineering.

[72]  Michael Collins,et al.  Three Generative, Lexicalised Models for Statistical Parsing , 1997, ACL.

[73]  Rens Bod,et al.  Parsing with the Shortest Derivation , 2000, COLING.

[74]  C. Hempel,et al.  Studies in the Logic of Explanation , 1948, Philosophy of Science.

[75]  Peter Desain,et al.  Computational models of beat induction: the rule-based approach , 1999 .

[76]  Rens Bod,et al.  Explaining New Phenomena in Terms of Previous Phenomena , 2004 .