Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol Espectroscopia de reflectancia difusa por infrarrojo cercano (NIR) para la predicción de carbono y nitrógeno de un Oxisol

RESUMEN The characterization of soil properties through laboratory analysis is an essential part of the diagnosis of the potential use of lands and their fertility. Conventional chemical analyzes are expensive and time consuming, hampering the adoption of crop management technologies, such as precision agriculture. The aim of the present paper was to evaluate the potential of near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of the carbon and nitrogen of Typic Hapludox. In the A and B horizons, 1,240 samples were collected in order to determine the total carbon (TC) and nitrogen (TN) contents, obtain the NIR spectral curve, and build models using partial least squares regression. The use of diffuse reflectance spec troscopy and statistical techniques allowed for the quantifica tion of the TC with adequate models of prediction based on a small number of samples, an residual prediction deviation RPD greater than 2.0, an R 2 greater than 0.80 and a low root mean square error RMSE. For TN, models with a good level of prediction were not obtained. The results based on the NIR models were able to be integrated directly into the geostatistical evaluations, obtaining similar digital maps from the observed and predicted TC. The use of pedometric techniques showed promising results for these soils and constitutes a basis for the development of this area of research on soil science in Colombia. La caracterizacion de las propiedades del suelo mediante analisis de laboratorio es parte esencial en el diagnostico del potencial de uso de las tierras y de su fertilidad. Los analisis quimicos convencionales son costosos y demorados, lo que dificulta la adopcion de tecnologias de gestion de cultivos, como la agricultura de precision. El objetivo del presente trabajo fue evaluar el potencial de la espectroscopia de reflectancia difusa por infrarrojo lejano (NIR) en la prediccion del carbono y del nitrogeno de un Typic Hapludox. Se recolectaron 1.240 muestras en los horizontes A y B, para determinar los contenidos de carbono total (TC) y nitrogeno total (TN), obtener las respuestas espectrales NIR y elaborar los modelos mediante regresion por minimos cuadrados parciales. El uso de las espectroscopia de reflectancia difusa y de tecnicas estadisticas permitio la cuantificacion del TC, con modelos de prediccion adecuados con bajo numero de muestras, desviacion residual de la prediccion RPD mayores de 2,0, R 2 mayores de 0,80 y error cuadratico medio RMSE bajos. Para TN no se obtuvieron modelos con buen nivel de prediccion. Para TC, los resultados obtenidos a partir de los modelos NIR pudieron integrarse directamente en las evaluaciones geoestadisticas, obteniendo mapas digitales y espectro-digitales similares. El uso de las tecnicas pedometricas, mostro resultados promisorios para estos suelos y se constituye en una base para el desarrollo de esta area de investigacion de la ciencia del suelo en Colombia.

[1]  José Alexandre Melo Demattê,et al.  Visible–NIR reflectance: a new approach on soil evaluation , 2004 .

[2]  Keith D. Shepherd,et al.  Infrared Spectroscopy—Enabling an Evidence-Based Diagnostic Surveillance Approach to Agricultural and Environmental Management in Developing Countries , 2007 .

[3]  A. Konopka,et al.  FIELD-SCALE VARIABILITY OF SOIL PROPERTIES IN CENTRAL IOWA SOILS , 1994 .

[4]  R. Plant Site-specific management: the application of information technology to crop production , 2001 .

[5]  A simplified analytical procedure for soil particle-size analysis by gamma-ray attenuation , 2004 .

[6]  Claudy Jolivet,et al.  Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database , 2012 .

[7]  J. Camacho-Tamayo,et al.  Spatial variability of an Alfisol cultivated with sugarcane , 2011 .

[8]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[9]  José Alexandre Melo Demattê,et al.  Espectrorradiometria de solos e comparação com sensores orbitais , 2012 .

[10]  Klaus Reichardt,et al.  Soil water retention curve determined by gamma-ray beam attenuation , 2005 .

[11]  Raphael A. Viscarra Rossel,et al.  ParLeS: Software for chemometric analysis of spectroscopic data , 2008 .

[12]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[13]  J. Camacho-Tamayo,et al.  EFFECT OF AGRICULTURAL INTERVENTION ON THE SPATIAL VARIABILITY OF SOME SOILS CHEMICAL PROPERTIES IN THE EASTERN PLAINS OF COLOMBIA , 2008 .

[14]  T. Fearn Assessing Calibrations: SEP, RPD, RER and R2 , 2002 .

[15]  P. Goovaerts Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties , 1998, Biology and Fertility of Soils.

[16]  Keith D. Shepherd,et al.  Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis , 2008 .

[17]  Sabine Grunwald,et al.  Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy , 2012 .

[18]  B. Singh,et al.  Disc harrowing intensity and its impact on soil properties and plant growth of agropastoral systems in the Llanos of Colombia , 2001 .

[19]  Won Suk Lee,et al.  Comparison of Ultraviolet, Visible, and Near Infrared Sensing for Soil Phosphorus , 2007 .

[20]  Wouter Saeys,et al.  Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy , 2005 .

[21]  J. Camacho-Tamayo,et al.  IDENTIFICATION OF AGRONOMIC MANAGEMENT UNITS BASED ON PHYSICAL ATTRIBUTES OF SOIL , 2011 .

[22]  D. Cozzolino,et al.  Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions , 2006 .

[23]  J. Demattê,et al.  Spectral behavior of some modal soil profiles from São Paulo State, Brazil , 2012 .

[24]  Sabine Grunwald,et al.  Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra , 2008 .

[25]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[26]  Sakae Shibusawa,et al.  Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping , 2013 .

[27]  Yufeng Ge,et al.  Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy. , 2011 .

[28]  B. Minasny,et al.  Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties , 2009 .

[29]  Heitor Cantarella,et al.  Variability of Soil Analysis in Commercial Laboratories: Implications for Lime and Fertilizer Recommendations , 2006 .

[30]  T. Painter,et al.  Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces , 2004 .

[31]  Budiman Minasny,et al.  A conditioned Latin hypercube method for sampling in the presence of ancillary information , 2006, Comput. Geosci..

[32]  Charlie Chen,et al.  Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils , 2011 .

[33]  Thomas Scholten,et al.  The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets , 2013 .

[34]  James B. Reeves,et al.  Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? , 2010 .

[35]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[36]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .