X-Ray Pore Optics Technologies and Their Application in Space Telescopes

Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared to SPO, but are even lighter and have achieved sufficient maturity level to be accepted as the X-ray optic technology for instruments on board the Bepi-Colombo mission, due to visit the planet Mercury. Opportunities for technology transfer to ground-based applications include material science, security and scanning equipment, and medical diagnostics. Pore X-ray optics combine high performance with modularity and economic industrial production processes, ensuring cost effective implementation.

[1]  Joachim E. Truemper,et al.  X-ray evolving universe spectroscopy mission (XEUS) , 1999, Optics & Photonics.

[2]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[3]  Anthony J. Peacock,et al.  The high throughput X-ray spectroscopy mission: XMM , 1990 .

[4]  Stefan Kraft,et al.  Potential of the PANTER x-ray test facility for calibration of instrumentation for XEUS , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  M. Bavdaz,et al.  Development of modular high-performance pore optics for the XEUS x-ray telescope , 2005, SPIE Optics + Photonics.

[6]  Andrew D. Holland,et al.  X-ray evolving universe spectroscopy mission (XEUS): narrow-field imaging high-resolution spectrometer: II (1 to 10 keV) , 1999, Optics & Photonics.

[7]  Ulf Griesmann,et al.  Interferometric thickness calibration of 300 mm silicon wafers , 2005, International Commission for Optics.

[8]  Wolfgang K. H. Schmidt,et al.  A proposed X-ray focusing device with wide field of view for use in X-ray astronomy , 1975 .

[9]  J. R. P. Angel,et al.  Lobster Eyes As X-Ray Telescopes , 1979, Other Conferences.

[10]  Michael Krumrey,et al.  High-accuracy detector calibration at the PTB four-crystal monochromator beamline , 2001 .

[11]  D. Lumb,et al.  Performance of multilayer coated silicon pore optics , 2010, Astronomical Telescopes + Instrumentation.

[12]  Heinrich W. Braeuninger,et al.  X-ray evolving universe spectroscopy mission (XEUS): x-ray mirror design and technology , 1999, Optics & Photonics.

[13]  Marcos Bavdaz,et al.  Production of silicon mirror plates , 2009, Optical Engineering + Applications.

[14]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[15]  Marcos Bavdaz,et al.  Developments in glass micropore optics for x-ray applications , 2006, SPIE Astronomical Telescopes + Instrumentation.

[16]  Yoshitaka Ishisaki,et al.  Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers. , 2006, Applied optics.

[17]  Marcos Bavdaz,et al.  HERMES: an imaging x-ray fluorescence spectrometer for the BepiColombo mission to Mercury , 2001, SPIE Optics + Photonics.

[18]  Marcos Bavdaz,et al.  Stacking of silicon pore optics for IXO , 2009, Optical Engineering + Applications.

[19]  J E Lees,et al.  Metrology and modeling of microchannel plate x-ray optics. , 1997, Applied optics.

[20]  Marco Beijersbergen,et al.  Development of x-ray pore optics: novel high-resolution silicon millipore optics for XEUS and ultralow mass glass micropore optics for imaging and timing , 2004, SPIE Optics + Photonics.

[21]  Marcos Bavdaz,et al.  Performance prediction and measurement of silicon pore optics , 2009, Optical Engineering + Applications.

[22]  Marcos Bavdaz,et al.  Progress at ESA on high-energy optics technologies , 2004, SPIE Optics + Photonics.

[23]  D. Martin,et al.  IXO system studies and technology preparation , 2009, Optical Engineering + Applications.

[24]  Marcos Bavdaz,et al.  Breadboard micro-pore optic development for x-ray imaging , 2007, SPIE Optical Engineering + Applications.

[25]  Carsten P. Jensen,et al.  Coating of silicon pore optics , 2009, Optical Engineering + Applications.

[26]  Arjan L Mieremet,et al.  Fundamental spatial resolution of an x-ray pore optic. , 2005, Applied optics.

[27]  D. Martin,et al.  ESA assessment study activities on the International X-ray Observatory , 2010, Astronomical Telescopes + Instrumentation.

[28]  F. E. Christensen,et al.  Influence of a carbon over-coat on the X-ray reflectance of XEUS mirrors , 2007, 0707.2490.

[29]  Marco Beijersbergen,et al.  Silicon pore optics: novel lightweight high-resolution x-ray optics developed for XEUS , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  Ralf Jedamzik,et al.  The manufacturing of the XEUS x-ray glass segmented mirrors: status of the investigation and last results , 2004, SPIE Optics + Photonics.

[31]  X. Barcons,et al.  XEUS: the x-ray evolving universe spectroscopy mission , 2003, SPIE Astronomical Telescopes + Instrumentation.

[32]  G. W. Fraser,et al.  Production of quasi-parallel X-ray beams using microchannel plate “X-ray lenses” , 1993 .

[33]  G. Vacanti,et al.  X-ray tracing using Geant4 , 2008, 0810.1273.

[34]  C. H. Whitford,et al.  The mercury imaging X-ray spectrometer (MIXS) on BepiColombo , 2010 .

[35]  Marcos Bavdaz,et al.  ESA optics technology preparation for IXO , 2010, Astronomical Telescopes + Instrumentation.

[36]  M. Bavdaz,et al.  Performance characterization of silicon pore optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[37]  B. Aschenbach,et al.  X-ray telescopes , 1985 .

[38]  Marcos Bavdaz,et al.  X-ray imaging glass micro-pore optics , 2007, SPIE Optical Engineering + Applications.

[39]  M. Bavdaz,et al.  Production of silicon pore optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[40]  Marcos Bavdaz,et al.  Silicon pore optics for astrophysical x-ray missions , 2007, SPIE Optical Engineering + Applications.

[41]  Marcos Bavdaz,et al.  Microchannel-plate-based x-ray optics , 1999, Optics & Photonics.

[42]  M. Bavdaz,et al.  Metrology, integration, and performance verification of silicon pore optics in Wolter-I configuration , 2006, SPIE Astronomical Telescopes + Instrumentation.

[43]  Monika Vongehr,et al.  Manufacturing of Wolter-I mirror segments with slumped glass , 2006, SPIE Astronomical Telescopes + Instrumentation.

[44]  Martin C. Weisskopf,et al.  Advanced X-ray Astrophysics Facility (AXAF): calibration overview , 1998, Optics & Photonics.

[45]  Heinrich W. Braeuninger,et al.  X-ray performance of a qualification model of an XMM mirror module , 1996, Optics & Photonics.

[46]  William W. Zhang,et al.  Development of lightweight x-ray mirrors for the Constellation-X mission , 2007, SPIE Optical Engineering + Applications.

[47]  Anthony J. Peacock,et al.  Design and performance of the payload instrumentation of the BepiColombo Mercury planetary orbiter , 2006 .

[48]  U. Gösele,et al.  SemiConductor Wafer Bonding: Science and Technology , 1998 .

[49]  Stefan Kraft,et al.  Assembling silicon pore optics into a modular structure , 2006, SPIE Astronomical Telescopes + Instrumentation.

[50]  D. Martin,et al.  Payload study activities on the International X-ray Observatory , 2010, Astronomical Telescopes + Instrumentation.

[51]  Keith A. Nugent,et al.  On the concentration, focusing, and collimation of x‐rays and neutrons using microchannel plates and configurations of holes , 1989 .

[52]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[53]  Mark R. Sims,et al.  X-ray focusing using microchannel plates , 1992, Optics & Photonics.

[54]  Keith A. Nugent,et al.  Square capillary x-ray optics , 1994, Optics & Photonics.

[55]  George W. Fraser,et al.  Hard X-ray imaging with microchannel plate optics , 1998 .