Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control

Abstract This paper presents an adaptive neural network (NN) based sliding mode control for unidirectional synchronization of Hindmarsh–Rose (HR) neurons in a master–slave configuration. We first give the dynamics of single HR neuron which may exhibit spike-burst chaotic behaviors. Then we formulate the problem of unidirectional synchronization control of two HR neurons and propose a NN based sliding mode controller. The controller consists of two simple radial basis function (RBF) NNs which are used to approximate the desired sliding mode controller and the uncertain nonlinear part of the error dynamical system, respectively. The control scheme is robust to the uncertainties such as approximate errors, ionic channel noise and external disturbances. The simulation results demonstrate the validity of the proposed control method.

[1]  Wang Jiang,et al.  Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control , 2006 .

[2]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[3]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[4]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[5]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[7]  Rafael Martínez-Guerra,et al.  Synchronization of a coupled Hodgkin–Huxley neurons via high order sliding-mode feedback , 2008 .

[8]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[9]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[10]  K. Narendra,et al.  A new adaptive law for robust adaptation without persistent excitation , 1987 .

[11]  T. Womelsdorf,et al.  The role of neuronal synchronization in selective attention , 2007, Current Opinion in Neurobiology.

[12]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Ricardo Femat,et al.  Unidirectional synchronization of Hodgkin–Huxley neurons , 2005 .

[14]  R. Harris-Warrick In: Dynamic Biological Networks: The Stomatogastric Nervous System , 1992 .

[15]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[16]  A. Isidori Nonlinear Control Systems , 1985 .

[17]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[18]  Bin Deng,et al.  Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation , 2006 .

[19]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[20]  N. Schoppa,et al.  Synchronization of Olfactory Bulb Mitral Cells by Precisely Timed Inhibitory Inputs , 2006, Neuron.

[21]  Bin Deng,et al.  Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control , 2007 .

[22]  Madan M. Gupta,et al.  Neuro-Control Systems: Theory and Applications , 1993 .

[23]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[24]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.