Modulators for Terahertz Communication: The Current State of the Art

With the increase of communication frequency, terahertz (THz) communication technology has been an important research field; particularly the terahertz modulator is becoming one of the core devices in THz communication system. The modulation performance of a THz communication system depends on the characterization of THz modulator. THz modulators based on different principles and materials have been studied and developed. However, they are still on the way to practical application due to low modulation speed, narrow bandwidth, and insufficient modulation depth. Therefore, we review the research progress of THz modulator in recent years and evaluate devices critically and comprehensively. We focus on the working principles such as electric, optical, optoelectrical, thermal, magnetic, programmable metamaterials and nonlinear modulation methods for THz wave with semiconductors, metamaterials, and 2D materials (such as graphene, molybdenum disulfide, and tungsten disulfide). Furthermore, we propose a guiding rule to select appropriate materials and modulation methods for specific applications in THz communication.

[1]  Hongda Chen,et al.  Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet , 2017, Scientific Reports.

[2]  Qi-Ye Wen,et al.  Terahertz Modulators Based on Silicon Nanotip Array , 2018 .

[3]  Sandra Wolff,et al.  Polarization-independent active metamaterial for high-frequency terahertz modulation. , 2009, Optics express.

[4]  Brent M. Polishak,et al.  Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials , 2011 .

[5]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[6]  P. Siegel Terahertz technology in biology and medicine , 2004, IEEE Transactions on Microwave Theory and Techniques.

[7]  Alain Haché,et al.  High contrast optical switching in vanadium dioxide thin films , 2008 .

[8]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[9]  M. Rahm,et al.  Spectrally wide-band terahertz wave modulator based on optically tuned graphene. , 2012, ACS nano.

[10]  J. W. Fleming High-Resolution Submillimeter-Wave Fourier-Transform Spectrometry of Gases , 1974 .

[11]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[12]  Hyunsoo Yang,et al.  Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure. , 2016, Optics letters.

[13]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[14]  Jianquan Yao,et al.  Novel optical controllable terahertz wave switch , 2008 .

[15]  Huili Grace Xing,et al.  Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. , 2012, Nano letters.

[16]  Martin Koch,et al.  An optically controllable terahertz filter , 2000 .

[17]  E. O. Polat,et al.  Broadband terahertz modulators using self-gated graphene capacitors , 2015 .

[18]  Antonello Andreone,et al.  A hybrid tunable THz metadevice using a high birefringence liquid crystal , 2016, Scientific Reports.

[19]  T. Kosugi,et al.  120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1 /spl mu/m-gate InP HEMTs , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[20]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[21]  L. Luo,et al.  Dual control of active graphene–silicon hybrid metamaterial devices , 2015 .

[22]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[23]  Hongda Chen,et al.  Optically tuned terahertz modulator based on annealed multilayer MoS2 , 2016, Scientific Reports.

[24]  P.Limelette,et al.  Universality and Critical Behavior at the Mott transition , 2004, cond-mat/0406351.

[25]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[26]  Tian Jiang,et al.  Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets. , 2017, Optics express.

[27]  Frequency and amplitude modulation in terahertz-sideband generation in quantum wells , 2009 .

[28]  Maxim Shkunov,et al.  Design of Flexible Passive Antenna Array on Kapton Substrate , 2016 .

[29]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[30]  Lei Zhang,et al.  Realization of Full Control of a Terahertz Wave Using Flexible Metasurfaces , 2017 .

[31]  Randy Deutsch Design and Fabrication , 2017 .

[32]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[33]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[34]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[35]  H. Fujita,et al.  Tunable Terahertz Filter and Modulator Based on Electrostatic MEMS Reconfigurable SRR Array , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Yufeng Hu,et al.  High-efficiency THz modulator based on phthalocyanine-compound organic films , 2015 .

[37]  Jiaguang Han,et al.  All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting , 2018, Light: Science & Applications.

[38]  Seung Jin Chae,et al.  Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy. , 2012, Nano letters.

[39]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[40]  Y. P. Lee,et al.  Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell , 2014 .

[41]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[42]  Derek Abbott,et al.  Flexible terahertz metamaterials for dual-axis strain sensing. , 2013, Optics letters.

[43]  Kiejin Lee,et al.  Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers , 2014 .

[44]  P. Siegel Terahertz Technology , 2001 .

[45]  Ozgur Aktas,et al.  Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. , 2011, Optics express.

[46]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[47]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[48]  Mohamed Gad-el-Hak,et al.  MEMS : Introduction and Fundamentals , 2005 .

[49]  David Zimdars,et al.  Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging , 2003, SPIE Defense + Commercial Sensing.

[50]  Kiejin Lee,et al.  Conditions for optimal efficiency of PCBM-based terahertz modulators , 2017 .

[51]  C. Otani,et al.  Terahertz imaging diagnostics of the cancer tissues with chemometrics technique , 2007, 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics.

[52]  Hiromasa Ito,et al.  Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure , 2011, 2011 International Semiconductor Device Research Symposium (ISDRS).

[53]  迟楠 Chi Nan,et al.  Study and Outlook of Terahertz Communication Technology , 2009 .

[54]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[55]  Nevill Francis Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[56]  Zhen Tian,et al.  Active graphene–silicon hybrid diode for terahertz waves , 2015, Nature Communications.

[57]  C. La-o-vorakiat,et al.  Graphene Terahertz Modulators by Ionic Liquid Gating , 2015, Advanced materials.

[58]  Jinghua Teng,et al.  Direct Optical Tuning of the Terahertz Plasmonic Response of InSb Subwavelength Gratings , 2013 .

[59]  N. Kukutsu,et al.  10-Gbit/s MMIC wireless link exceeding 800 meters , 2008, 2008 IEEE Radio and Wireless Symposium.

[60]  Qi-Ye Wen,et al.  Graphene based All-Optical Spatial Terahertz Modulator , 2014, Scientific Reports.

[61]  P. Wallace The Band Theory of Graphite , 1947 .

[62]  Tie Jun Cui,et al.  Information metamaterials and metasurfaces , 2017 .

[63]  J. Rogers,et al.  A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates , 2006, Science.

[64]  Zhu Jian Development and applications of MEMS technology , 2003 .

[65]  J. Witzens,et al.  Modification of Level Dependent ASE-Signal Beat Noise by Optical and Electrical Filtering in Optically Preamplified Direct Detection Receivers , 2018, IEEE Photonics Journal.

[66]  A. Hirata,et al.  120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission , 2006, IEEE Transactions on Microwave Theory and Techniques.

[67]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[68]  R. Jiang,et al.  Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si:HfO2/Si structures , 2015 .

[69]  Ying Zhang,et al.  Integrated Terahertz Graphene Modulator with 100% Modulation Depth , 2015 .

[70]  Hua Zhong,et al.  Terahertz Spectroscopy and Imaging for Defense and Security Applications , 2007, Proceedings of the IEEE.

[71]  Byung-Gyu Chae,et al.  Monoclinic and correlated metal phase in VO(2) as evidence of the Mott transition: coherent phonon analysis. , 2006, Physical review letters.

[72]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[73]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[74]  Yadong Jiang,et al.  Broadband terahertz modulator based on graphene metamaterials , 2018 .

[75]  Li Jiu-sheng,et al.  Terahertz Modulator Using 4-N,N-Dimethylamino-4′-N′-Methyl-Stilbazolium Tosylate (DAST)/Si Hybrid Structure , 2018, IEEE Photonics Journal.

[76]  Hiroyuki Fujita,et al.  MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. , 2014, Optics express.

[77]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[78]  Michael Wraback,et al.  Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates , 2013, IEEE Transactions on Terahertz Science and Technology.

[79]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[80]  L. Varani,et al.  TeraHertz Emission and Noise Spectra in HEMTs , 2005 .

[81]  B. Jin,et al.  Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. , 2017, Optics express.

[82]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[83]  E. Hendry,et al.  Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy , 2011 .

[84]  Robert Osiander,et al.  Terahertz waves for communications and sensing , 2004 .

[85]  A. Alú,et al.  Terahertz Metamaterial Devices Based on Graphene Nanostructures , 2013, IEEE Transactions on Terahertz Science and Technology.

[86]  Yanrong Li,et al.  Flexible graphene-based electroluminescent devices. , 2011, ACS nano.

[87]  Xin Liu,et al.  Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids , 2018 .

[88]  Liu Wen-xin Progress of terahertz in communication technology , 2006 .

[89]  Huili Grace Xing,et al.  Efficient terahertz electro-absorption modulation employing graphene plasmonic structures , 2012 .

[90]  Xin Liu,et al.  Active terahertz wave modulator based on molybdenum disulfide , 2017 .

[91]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[92]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[93]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[94]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[95]  T. E. Haynes,et al.  Switchable reflectivity on silicon from a composite VO2-SiO2 protecting layer , 2004 .

[96]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[97]  Yeju Huang,et al.  Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system , 2016 .

[98]  Hui-Tian Wang,et al.  Tunable slow light in semiconductor metamaterial in a broad terahertz regime , 2010 .

[99]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[100]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[101]  Gwyn P. Williams Filling the THz gap—high power sources and applications , 2006 .

[102]  H. Altan,et al.  Multilayer Graphene Broadband Terahertz Modulators with Flexible Substrate , 2018 .

[103]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[104]  T. Crowe Multiplier technology for terahertz applications , 1998, 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171).

[105]  Tie Jun Cui,et al.  Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials , 2017 .

[106]  A. Azad,et al.  Active control of polarization-dependent near-field coupling in hybrid metasurfaces , 2018, Applied Physics Letters.

[107]  Eiichi Sano,et al.  Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays. , 2005, Optics letters.

[108]  M. Koch,et al.  TERAHERTZ QUALITY CONTROL OF POLYMERIC PRODUCTS , 2007 .

[109]  Yuma Takida,et al.  Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission. , 2017, Optics express.

[110]  S. Cherry,et al.  Edholm's law of bandwidth , 2004, IEEE Spectrum.

[111]  I. Osborne Filling the THz Gap , 2008, Science.

[112]  E. E. Chain,et al.  Optical properties of vanadium dioxide and vanadium pentoxide thin films. , 1991, Applied optics.

[113]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[114]  Jiusheng Li,et al.  Terahertz modulator using photonic crystals , 2007 .

[115]  Wen-feng Sun,et al.  Efficient terahertz modulator based on photoexcited graphene , 2017 .

[116]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[117]  Derek Abbott,et al.  Identification of biological tissue using chirped probe THz imaging , 2002 .

[118]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[119]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[120]  M. Dokmeci,et al.  Flexible Plasmonics on Unconventional and Nonplanar Substrates , 2011, Advanced materials.

[121]  Vertically magnetic-controlled THz modulator based on 2-D magnetized plasma photonic crystal , 2017 .

[122]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[123]  Jiahua Li,et al.  Coherent laser-induced optical behaviors in three-coupled-quantum wells and their application to terahertz signal detection , 2009 .

[124]  Nader Engheta,et al.  Digital metamaterials. , 2014, Nature materials.

[125]  L. Fekete,et al.  Ultrafast opto-terahertz photonic crystal modulator. , 2007, Optics letters.