Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region

[1]  H. Kämpf,et al.  Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany) , 2018, International Journal of Earth Sciences.

[2]  P. Hrubcová,et al.  Active Magmatic Underplating in Western Eger Rift, Central Europe , 2017 .

[3]  J. Plomerová,et al.  Lateral displacement of crustal units relative to underlying mantle lithosphere: Example from the Bohemian Massif , 2017 .

[4]  M. Alawi,et al.  Drilling into an active mofette: pilot-hole study of the impact of CO 2 -rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic) , 2017 .

[5]  C. Matyska,et al.  Earthquake-enhanced permeability - evidence from carbon dioxide release following the M L 3.5 earthquake in West Bohemia , 2017 .

[6]  C. Haberland,et al.  Attenuation tomography in West Bohemia/Vogtland , 2017 .

[7]  N. Meqbel,et al.  Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling , 2016 .

[8]  Kerry Key,et al.  MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data , 2016 .

[9]  S. Hainzl,et al.  Aftershocks triggered by fluid intrusion: Evidence for the aftershock sequence occurred 2014 in West Bohemia/Vogtland , 2016 .

[10]  M. D. Wit,et al.  A deep electrical conductivity structure of the southern Barberton Greenstone Belt, South Africa, derived from magnetotelluric measurements , 2016 .

[11]  B. Růžek,et al.  Origin of earthquake swarms in the western Bohemian Massif: Is the mantle CO2 degassing, followed by the Cheb Basin subsidence, an essential driving force? , 2016 .

[12]  M. Korn,et al.  Seismic tomography reveals a mid-crustal intrusive body, fluid pathways and their relation to the earthquake swarms in West Bohemia/Vogtland , 2015 .

[13]  V. R. Gajevskiy Electric Conductivity of Carbon Dioxide Aqueous Solutions , 2015 .

[14]  H. Kämpf,et al.  CO2 degassing in the Hartoušov mofette area, western Eger Rift, imaged by CO2 mapping and geoelectrical and gravity surveys , 2015, International Journal of Earth Sciences.

[15]  K. Bräuer,et al.  Seismically triggered anomalies in the isotope signatures of mantle‐derived gases detected at degassing sites along two neighboring faults in NW Bohemia, central Europe , 2014 .

[16]  F. Weinlich Carbon dioxide controlled earthquake distribution pattern in the NW Bohemian swarm earthquake region, western Eger Rift, Czech Republic – gas migration in the crystalline basement , 2014 .

[17]  Tomáš Fischer,et al.  Intra-continental earthquake swarms in West-Bohemia and Vogtland: A review , 2014 .

[18]  V. Stejskal,et al.  Geodynamic processes in the NW Bohemian swarm earthquake region, Czech Republic, identified by continuous gas monitoring , 2013 .

[19]  K. Bräuer,et al.  CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): Characterisation (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions , 2013 .

[20]  P. Hrubcová,et al.  Moho depth determination from waveforms of microearthquakes in the West Bohemia/Vogtland swarm area , 2013 .

[21]  Ute Weckmann,et al.  Correlation between deep fluids, tremor and creep along the central San Andreas fault , 2011, Nature.

[22]  Jeffrey S. Ovall,et al.  A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling , 2011 .

[23]  U. Weckmann,et al.  Making and Breaking of a Continent: Following the Scent of Geodynamic Imprints on the African Continent Using Electromagnetics , 2011, Surveys in Geophysics.

[24]  Max A. Meju,et al.  Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging , 2010 .

[25]  K. Bräuer,et al.  Earthquake swarms in non‐volcanic regions: What fluids have to say , 2009 .

[26]  A. Brauer,et al.  Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys , 2009 .

[27]  T. Fischer,et al.  Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review) , 2008 .

[28]  A. Mateus,et al.  Unraveling middle-crust conductive layers in Paleozoic Orogens through 3D modeling of magnetotelluric data : The Ossa-Morena Zone case study (SW Iberian Variscides) , 2008 .

[29]  K. Bräuer,et al.  Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes , 2008 .

[30]  Tomáš Fischer,et al.  Intraplate seismicity in the western Bohemian Massif (central Europe): A possible correlation with a paleoplate junction , 2007 .

[31]  W. Seifert,et al.  Petrological and seismic studies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia, central Europe , 2007 .

[32]  H. Kämpf,et al.  Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe , 2006 .

[33]  G. Marquis,et al.  Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data , 2005, Nature.

[34]  Ute Weckmann,et al.  Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme , 2005 .

[35]  S. Shapiro,et al.  Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion , 2005 .

[36]  A. Hemmann,et al.  Earthquake swarms in the Vogtland/Western Bohemia region: Spatial distribution and magnitude–frequency distribution as an indication of the genesis of swarms? , 2005 .

[37]  Yosihiko Ogata,et al.  Detecting fluid signals in seismicity data through statistical earthquake modeling , 2005 .

[38]  K. Bräuer,et al.  Evidence for ascending upper mantle‐derived melt beneath the Cheb basin, central Europe , 2005 .

[39]  H. Kümpel,et al.  The KTB Deep Crustal Laboratory and the western Eger Graben , 2005 .

[40]  Paul A. Bedrosian,et al.  Electrical conductivity images of active and fossil fault zones , 2005, Geological Society, London, Special Publications.

[41]  M. Becken,et al.  An ellipticity criterion in magnetotelluric tensor analysis , 2004 .

[42]  K. Bräuer,et al.  Isotopic evidence (3He/4He, of fluid‐triggered intraplate seismicity , 2003 .

[43]  P. Bankwitz,et al.  Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic) , 2003 .

[44]  Yoshimori Honkura,et al.  Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc , 2001 .

[45]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[46]  Johnston,et al.  Dilational processes accompanying earthquakes in the long valley caldera , 2000, Science.

[47]  K. Bräuer,et al.  An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints , 1999 .

[48]  Oliver Ritter,et al.  New equipment and processing for magnetotelluric remote reference observations , 1998 .

[49]  S. Mueller,et al.  The European Cenozoic rift system , 1996 .

[50]  W. Mooney,et al.  Seismic evidence for active magmatic underplating beneath the Basin and Range Province, western United States , 1993 .

[51]  K. Vozoff,et al.  Magnetotellurics: Principles and practice , 1990, Journal of Earth System Science.

[52]  H. Maluski,et al.  Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing , 1990 .

[53]  W. Franke Tectonostratigraphic units in the Variscan belt of central Europe , 1989 .

[54]  R. Parker The inverse problem of electromagnetic induction: Existence and construction of solutions based on incomplete data , 1980 .