Quantum control model for spatial propagation of electromagnetic fields in dielectrics

The design of many quantum optical devices is attributed to the determination of spatially distributed parameters (e.g., refraction index in photonic crystal), which calls for a theoretical description for the spatial propagation of quantum fields. This paper discusses the spatial evolution of quantized electromagnetic fields in waveguide with spatially variant dielectric parameters, which is in parallel with the time evolution in the standard input-output formalism [C. W. Gardiner and M. J. Collett, Phys.Rev.A 31, 3761 (1985)]. This formalism is non-trivial to quantum optics in nonlinear and dispersive medium, and provides a new perspective of modeling and analyzing the control of quantum fields by matter.

[1]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[2]  D. Welsch,et al.  Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Drummond,et al.  Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[4]  Ken Ichi Arai,et al.  Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers , 1998 .

[5]  R. Kosut,et al.  Coherent Control of Decoherence , 2005, Science.

[6]  Jing Zhang,et al.  Control problems in quantum systems , 2012 .

[7]  Barak Dayan,et al.  Theory of two-photon interactions with broadband down-converted light and entangled photons , 2007, 0704.2859.

[8]  Y. Ben-Aryeh,et al.  The quantum treatment of propagation in non-linear optical media by the use of temporal modes , 1991 .

[9]  V Laude,et al.  Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. , 2000, Optics letters.

[10]  Barnett,et al.  Quantization of the electromagnetic field in dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[12]  Motoaki Bamba,et al.  System-environment coupling derived by Maxwell's boundary conditions from the weak to the ultrastrong light-matter-coupling regime , 2013, 1301.3960.

[13]  Huttner,et al.  Quantum analysis of light propagation in a parametric amplifier. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[14]  S. M. Dutra The permittivity in the Huttner-Barnett theory of QED in dielectrics , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[15]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[16]  Peter W. Milonni,et al.  Field Quantization and Radiative Processes in Dispersive Dielectric Media , 1995 .

[17]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[18]  R. D. Wolf Quantum Computation and Shor's Factoring Algorithm , 1999 .

[19]  Yacob Ben-Aryeh,et al.  The problem of propagation in quantum optics, with applications to amplification, coupling of EM modes and distributed feedback lasers , 1994 .

[20]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[23]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[24]  Milan Pospíchal,et al.  Quantum theory of light propagation I. General theory , 1995 .

[25]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[26]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[27]  Wolfgang Freude,et al.  High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. , 2008, Optics express.

[28]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[29]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[30]  Vlasta Perinova,et al.  Quantum Aspects of Light Propagation , 2009 .

[31]  M. G. Say,et al.  Relativistic Quantum Fields , 1966 .

[32]  J. Sipe,et al.  Optical pulse propagation in nonlinear photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  E. Brainis,et al.  Four-photon scattering in birefringent fibers , 2008, 0807.3946.

[34]  Yacob Ben-Aryeh,et al.  Space-time description of propagation in nonlinear dielectric media , 1991 .

[35]  Audrey Dot,et al.  Quantum theory analysis of triple photons generated by a χ (3) process , 2012 .

[36]  Alessio Serafini,et al.  Distributed quantum computation via optical fibers. , 2006, Physical review letters.

[37]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[38]  Steven Weinberg,et al.  Field Theory for Today. (Book Reviews: The Quantum Theory of Fields. Volume 1, Foundations) , 1995 .

[39]  S. M. Dutra,et al.  The permittivity in the Huttner-Barnett theory of QED in dielectrics , 1998 .

[40]  Yaron Silberberg,et al.  Coherent quantum control of two-photon transitions by a femtosecond laser pulse , 1998, Nature.

[41]  V. Peřinová,et al.  The concept of equal space commutators in quantum optics , 1992 .