High-order finite volume methods for viscoelastic flow problems
暂无分享,去创建一个
M. Aboubacar | Timothy Nigel Phillips | B. A. Snigerev | M. F. Webster | H. R. Tamaddon-Jahromi | T. Phillips | M. Webster | M. Aboubacar
[1] A. Jameson,et al. Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh , 1985 .
[2] M. Webster,et al. A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows , 2001 .
[3] M. Fortin,et al. A new mixed finite element method for computing viscoelastic flows , 1995 .
[4] K. W. Morton,et al. Cell vertex methods for inviscid and viscous flows , 1993 .
[5] Philip L. Roe,et al. Compact high‐resolution algorithms for time‐dependent advection on unstructured grids , 2000 .
[6] N. D. Waters,et al. Unsteady flow of an elastico-viscous liquid , 1970 .
[7] N. Phan-Thien,et al. Three dimensional numerical simulations of viscoelastic flows through planar contractions , 1998 .
[8] M. Gerritsma. Time dependent numerical simulations of a viscoelastic fluid on a staggered grid , 1996 .
[9] M. Aboubacar,et al. Time‐dependent algorithms for viscoelastic flow: Finite element/volume schemes , 2005 .
[10] J. Donea. A Taylor–Galerkin method for convective transport problems , 1983 .
[11] N. Weatherill. A method for generating irregular computational grids in multiply connected planar domains , 1988 .
[12] Michel Fortin,et al. On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows , 1989 .
[13] Timothy Nigel Phillips,et al. Conservative semi‐Lagrangian finite volume schemes , 2001 .
[14] M. Webster,et al. A second-order hybrid finite-element/volume method for viscoelastic flows 1 Dedicated to Professor M , 1998 .
[15] G. P Sasmal,et al. A finite volume approach for calculation of viscoelastic flow through an abrupt axisymmetric contraction , 1995 .
[16] M. Crochet,et al. A new mixed finite element for calculating viscoelastic flow , 1987 .
[17] T. Phillips,et al. Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .
[18] M. F. Webster,et al. Simulation for viscoelastic flow by a finite volume/element method , 1999 .
[19] Jeffrey S. Scroggs,et al. A conservative semi‐Lagrangian method for multidimensional fluid dynamics applications , 1995 .
[20] M. Deville,et al. Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction , 1997 .
[21] Philip L. Roe,et al. A multidimensional generalization of Roe's flux difference splitter for the euler equations , 1993 .
[22] John R. Whiteman,et al. Numerical modelling of viscoelastic liquids using a finite-volume method , 1992 .
[23] R. Armstrong,et al. Finite element methdos for calculation of steady, viscoelastic flow using constitutive equations with a Newtonian viscosity , 1990 .
[24] M. F. Webster,et al. A Taylor–Galerkin‐based algorithm for viscous incompressible flow , 1990 .
[25] M. F. Webster,et al. Taylor‐Galerkin algorithms for viscoelastic flow: Application to a model problem , 1994 .
[26] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[27] J. Yoo,et al. A NUMERICAL STUDY OF THE PLANAR CONTRACTION FLOW OF A VISCOELASTIC FLUID USING THE SIMPLER ALGORITHM , 1991 .