Formal Modeling and Analysis of Timed Systems

ion of Probabilistic Systems (Invited Talk) . . . . . . . . . . . . . . . . . . . 1 Joost-Pieter Katoen From Analysis to Design (Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Bruce H. Krogh Efficient On-the-Fly Algorithms for Partially Observable Timed Games (Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Franck Cassez Undecidability of Universality for Timed Automata with Minimal Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Sara Adams, Joël Ouaknine, and James Worrell On Timed Models of Gene Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Grégory Batt, Ramzi Ben Salah, and Oded Maler Costs Are Expensive! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Patricia Bouyer and Nicolas Markey Hypervolume Approximation in Timed Automata Model Checking . . . . . 69 Vı́ctor Braberman, Jorge Lucángeli Obes, Alfredo Olivero, and Fernando Schapachnik Counter-Free Input-Determined Timed Automata . . . . . . . . . . . . . . . . . . . . 82 Fabrice Chevalier, Deepak D’Souza, and Pavithra Prabhakar Towards Budgeting in Real-Time Calculus: Deferrable Servers . . . . . . . . . 98 Pieter J.L. Cuijpers and Reinder J. Bril Automatic Abstraction Refinement for Timed Automata . . . . . . . . . . . . . 114 Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen Dynamical Properties of Timed Automata Revisited . . . . . . . . . . . . . . . . . . 130 Cătălin Dima Robust Sampling for MITL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Georgios E. Fainekos and George J. Pappas On the Expressiveness of MTL Variants over Dense Time . . . . . . . . . . . . . 163 Carlo Alberto Furia and Matteo Rossi Quantitative Model Checking Revisited: Neither Decidable Nor Approximable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Sergio Giro and Pedro R. D’Argenio

[1]  Kim G. Larsen,et al.  On Zone-Based Analysis of Duration Probabilistic Automata , 2010, INFINITY.

[2]  Hanifa Boucheneb,et al.  On Multi-enabledness in Time Petri Nets , 2013, Petri Nets.

[3]  Markus Krötzsch,et al.  Generalized ultrametric spaces in quantitative domain theory , 2006, Theor. Comput. Sci..

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  Dominique Perrin,et al.  Generating Functions of Timed Languages , 2012, MFCS.

[6]  Thomas A. Henzinger,et al.  Temporal proof methodologies for real-time systems , 1991, POPL '91.

[7]  Thomas Chatain,et al.  Complete Finite Prefixes of Symbolic Unfoldings of Safe Time Petri Nets , 2006, ICATPN.

[8]  Marc Boyer,et al.  Comparison of the Expressiveness of Arc, Place and Transition Time Petri Nets , 2007, ICATPN.

[9]  Jörg Desel,et al.  Free choice Petri nets , 1995 .

[10]  Eugene Asarin,et al.  Thin and Thick Timed Regular Languages , 2011, FORMATS.

[11]  Hongyang Qu,et al.  Adding Invariants to Event Zone Automata , 2006, FORMATS.

[12]  Xavier Leroy,et al.  Formal certification of a compiler back-end or: programming a compiler with a proof assistant , 2006, POPL '06.

[13]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[14]  A. W. Roscoe,et al.  Metric Spaces as Models for Real-Time Concurrency , 1987, MFPS.

[15]  P. Merlin,et al.  Recoverability of Communication Protocols - Implications of a Theoretical Study , 1976, IEEE Transactions on Communications.

[16]  Herman Geuvers,et al.  Automated Machine-Checked Hybrid System Safety Proofs , 2010, ITP.

[17]  Nathalie Bertrand,et al.  Quantitative Model-Checking of One-Clock Timed Automata under Probabilistic Semantics , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[18]  Christine Paulin-Mohring Modelisation of Timed Automata in Coq , 2001, TACS.

[19]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[20]  Albert Benveniste,et al.  Markov nets: probabilistic models for distributed and concurrent systems , 2003, IEEE Trans. Autom. Control..

[21]  Joost Engelfriet,et al.  Branching processes of Petri nets , 1991, Acta Informatica.

[22]  Johan Lilius,et al.  A causal semantics for time Petri nets , 2000, Theor. Comput. Sci..

[23]  Olaf Müller,et al.  Functional Specification of Real-Time and Hybrid Systems , 1997, HART.

[24]  Eugene Asarin,et al.  Two Size Measures for Timed Languages , 2010, FSTTCS.

[25]  Nicolas Basset,et al.  A maximal entropy stochastic process for a timed automaton , 2013, Inf. Comput..

[26]  Edward A. Lee,et al.  CPO semantics of timed interactive actor networks , 2008, Theor. Comput. Sci..

[27]  Eric V. Denardo,et al.  Periods of Connected Networks and Powers of Nonnegative Matrices , 1977, Math. Oper. Res..

[28]  Nicholas Ruozzi,et al.  Applications of Metric Coinduction , 2007, CALCO.

[29]  Rachel Cardell-Oliver,et al.  An embedding of Timed Transition Systems in HOL , 1993, Formal Methods Syst. Des..

[30]  Enrico Vicario,et al.  Close form derivation of state-density functions over DBM domains in the analysis of non-Markovian models , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[31]  Eike Best,et al.  Structure Theory of Petri Nets: the Free Choice Hiatus , 1986, Advances in Petri Nets.

[32]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[33]  Dominique Perrin,et al.  Toward a Timed Theory of Channel Coding , 2012, FORMATS.

[34]  Boudewijn R. Haverkort Formal Modeling and Analysis of Timed Systems: Technology Push or Market Pull? , 2011, FORMATS.

[35]  Thomas A. Henzinger,et al.  Timed Transition Systems , 1991, REX Workshop.