Necessary and Sufficient Conditions for the Noninvertibility of Fundamental Solution Matrices of a Discontinuous System

In discontinuous systems, the fundamental solution matrix of the linearized dynamics about a reference trajectory can be noninvertible. This feature can be exploited, for instance, to design robust control algorithms, to synchronize a network, or to stabilize otherwise unstable or chaotic dynamics. In this paper we classify all the phenomena that cause rank defect in the fundamental solution matrix of a generic discontinuous system. We relate these phenomena to simple geometric conditions at a point of vector field switching, sliding, or impact, and we derive necessary and sufficient conditions for the rank defect. This constitutes a valuable tool to detect flow noninvertibility or to purposefully include it in the design of a system. In terms of Lyapunov exponents, the singularity of the fundamental solution matrix means that an infinitesimal sphere of initial perturbations is mapped onto a lower-dimensional ellipsoid. This consequently reduces the number of finite exponents and, most remarkably, makes t...

[1]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[2]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[3]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[4]  F Dercole,et al.  Coevolution of slow–fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics , 2006, Proceedings of the Royal Society B: Biological Sciences.

[5]  A. P. Ivanov,et al.  The stability of periodic solutions of discontinuous systems that intersect several surfaces of discontinuity , 1998 .

[6]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[7]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[8]  Karl Popp,et al.  Dynamics of oscillators with impact and friction , 1997 .

[9]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[10]  Shuang Liu,et al.  Second-order terminal sliding mode control for networks synchronization , 2014, Nonlinear Dynamics.

[11]  Volker Mehrmann,et al.  Spectral analysis for linear differential-algebraic equations , 2011 .

[12]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[13]  M. Branicky Topology of hybrid systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[14]  Hideyuki Suzuki,et al.  Theory of hybrid dynamical systems and its applications to biological and medical systems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Teng Yong Chaos in a Three Species Food Chain , 2011 .

[16]  Carlo Piccardi,et al.  Synchrony in tritrophic food chain metacommunities , 2009, Journal of biological dynamics.

[17]  Volker Mehrmann,et al.  QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations , 2011, Adv. Comput. Math..

[18]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[19]  Alessandro Colombo,et al.  Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth Flows , 2011, SIAM J. Appl. Dyn. Syst..

[20]  Luca Dieci,et al.  Fundamental matrix solutions of piecewise smooth differential systems , 2011, Math. Comput. Simul..

[21]  Mario di Bernardo,et al.  Teixeira singularities in 3D switched feedback control systems , 2010, Syst. Control. Lett..

[22]  Silvia Villa,et al.  On the Regularization of Sliding Modes , 2007, SIAM J. Optim..

[23]  Fabio Dercole,et al.  Numerical sliding bifurcation analysis: an application to a relay control system , 2003 .

[24]  Iberê L. Caldas,et al.  Calculation of Lyapunov exponents in systems with impacts , 2004 .

[25]  Alessandro Colombo,et al.  Chaos in Two-Party Democracies , 2008, Int. J. Bifurc. Chaos.

[26]  M. A. Aizerman,et al.  On the stability of periodic motions , 1958 .

[27]  Alan R. Champneys,et al.  Corner collision implies border-collision bifurcation , 2001 .

[28]  H. Dankowicz,et al.  Exploiting discontinuities for stabilization of recurrent motions , 2002 .

[29]  G. S. Gajani,et al.  Periodic Small Signal Analysis of a Wide Class of Type-II Phase Locked Loops Through an Exhaustive Variational Model , 2012, IEEE Transactions on Circuits and Systems Part 1: Regular Papers.

[30]  Fabio Dercole,et al.  A New Stock Market Model with Adaptive Rational Equilibrium Dynamics , 2010, 2010 Complexity in Engineering.

[31]  Federico Bizzarri,et al.  Phase Noise Simulation in Analog Mixed Signal Circuits: An Application to Pulse Energy Oscillators , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Karl Henrik Johansson,et al.  Structural stability of hybrid systems , 2001 .

[33]  V. Utkin Variable structure systems with sliding modes , 1977 .

[34]  Federico Bizzarri,et al.  Steady State Computation and Noise Analysis of Analog Mixed Signal Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[36]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[37]  P. Müller Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .

[38]  Fabio Dercole,et al.  ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITION , 2002, Evolution; international journal of organic evolution.

[39]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[40]  Fabio Dercole,et al.  Bifurcation analysis of piecewise smooth ecological models. , 2007, Theoretical population biology.

[41]  Alessandro Colombo,et al.  Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems , 2012 .

[42]  Alan R. Champneys,et al.  Normal form maps for grazing bifurcations in n -dimensional piecewise-smooth dynamical systems , 2001 .

[43]  Yi Sun,et al.  Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type , 2010, Journal of Computational Neuroscience.

[44]  Mario di Bernardo,et al.  Two-fold singularity in nonsmooth electrical systems , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[45]  Alessandro Colombo,et al.  The Two-Fold Singularity of Discontinuous Vector Fields , 2009, SIAM J. Appl. Dyn. Syst..

[46]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[47]  William S. Levine,et al.  Handbook of Networked and Embedded Control Systems (Control Engineering) , 2005 .

[48]  Alessandro Colombo,et al.  Boundary intersection crossing bifurcation in the presence of sliding , 2008 .

[49]  Federico Bizzarri,et al.  Lyapunov exponents computation for hybrid neurons , 2013, Journal of Computational Neuroscience.

[50]  S. Shankar Sastry,et al.  Dimension reduction near periodic orbits of hybrid systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[51]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .