The Douglas–Rachford algorithm for convex and nonconvex feasibility problems
暂无分享,去创建一个
Matthew K. Tam | Francisco J. Aragón Artacho | Rubén Campoy | R. Campoy | F. J. Aragón Artacho | Rubén Campoy
[1] Guy Pierra,et al. Decomposition through formalization in a product space , 1984, Math. Program..
[2] Bishnu P. Lamichhane,et al. APPLICATION OF PROJECTION ALGORITHMS TO DIFFERENTIAL EQUATIONS: BOUNDARY VALUE PROBLEMS , 2017, The ANZIAM Journal.
[3] Benar Fux Svaiter,et al. On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..
[4] Jonathan M. Borwein,et al. The Cyclic Douglas-Rachford Method for Inconsistent Feasibility Problems , 2013, 1310.2195.
[5] Heinz H. Bauschke,et al. On the Douglas–Rachford algorithm , 2016, Mathematical Programming.
[6] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[7] D. Russell Luke,et al. Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings , 2016, Math. Oper. Res..
[8] Veit Elser. Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[9] Nguyen Hieu Thao,et al. A convergent relaxation of the Douglas–Rachford algorithm , 2017, Computational Optimization and Applications.
[10] Jonathan M. Borwein,et al. Reflection methods for inverse problems with applications to protein conformation determination , 2017 .
[11] Roger Behling,et al. Circumcentering the Douglas–Rachford method , 2017, Numerical Algorithms.
[12] Matthew K. Tam. Algorithms based on unions of nonexpansive maps , 2018, Optim. Lett..
[13] Francisco J. Aragón Artacho,et al. A new projection method for finding the closest point in the intersection of convex sets , 2016, Comput. Optim. Appl..
[14] Heinz H. Bauschke,et al. On the local convergence of the Douglas–Rachford algorithm , 2014, 1401.6188.
[15] Andrzej Cegielski,et al. Projection methods: an annotated bibliography of books and reviews , 2014, 1406.6143.
[16] A. Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .
[17] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[18] Heinz H. Bauschke,et al. The Douglas–Rachford algorithm for a hyperplane and a doubleton , 2018, J. Glob. Optim..
[19] D. Russell Luke,et al. Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..
[20] Yair Censor,et al. The cyclic Douglas–Rachford algorithm with r-sets-Douglas–Rachford operators , 2018, Optim. Methods Softw..
[21] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[22] Matthew K. Tam,et al. Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions , 2019, J. Optim. Theory Appl..
[23] Matthew K. Tam,et al. DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS , 2013, The ANZIAM Journal.
[24] Y. Censor. Iterative Methods for the Convex Feasibility Problem , 1984 .
[25] Hung M. Phan,et al. Linear convergence of the Douglas–Rachford method for two closed sets , 2014, 1401.6509.
[26] øöö Blockinø. Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .
[27] Heinz H. Bauschke,et al. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle , 2013, J. Approx. Theory.
[28] Jonathan M. Borwein,et al. The Douglas-Rachford Algorithm in the Absence of Convexity , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[29] T.Wang,et al. A GENERALIZATION OF THE n-QUEEN PROBLEM , 1989 .
[30] Jonathan M. Borwein,et al. Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..
[31] J. Borwein,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[32] F. Deutsch. Best approximation in inner product spaces , 2001 .
[33] Scott B. Lindstrom,et al. SURVEY: SIXTY YEARS OF DOUGLAS–RACHFORD , 2018, Journal of the Australian Mathematical Society.
[34] Joël Benoist,et al. The Douglas–Rachford algorithm for the case of the sphere and the line , 2015, J. Glob. Optim..
[35] Heinz H. Bauschke. New Demiclosedness Principles for (Firmly) Nonexpansive Operators , 2011, 1103.0991.
[36] Francisco J. Aragón Artacho,et al. Solving Graph Coloring Problems with the Douglas-Rachford Algorithm , 2016, Set-Valued and Variational Analysis.
[37] A. Pazy. Asymptotic behavior of contractions in hilbert space , 1971 .
[38] Guoyin Li,et al. Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems , 2014, Math. Program..
[39] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .
[40] Heinz H. Bauschke,et al. On the asymptotic behaviour of the Aragón Artacho-Campoy algorithm , 2018, Oper. Res. Lett..
[41] Veit Elser,et al. The Complexity of Bit Retrieval , 2016, IEEE Transactions on Information Theory.
[42] Jonathan M. Borwein,et al. Norm convergence of realistic projection and reflection methods , 2013, 1312.7323.
[43] Hung M. Phan,et al. Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems , 2017, J. Glob. Optim..
[44] Jonathan M. Borwein,et al. A Cyclic Douglas–Rachford Iteration Scheme , 2013, J. Optim. Theory Appl..
[45] Hein Hundal. An alternating projection that does not converge in norm , 2004 .
[46] Heinz H. Bauschke,et al. Linear and strong convergence of algorithms involving averaged nonexpansive operators , 2014, Journal of Mathematical Analysis and Applications.
[47] Jonathan M. Borwein,et al. Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres , 2016, 1610.03975.
[48] D. Russell Luke,et al. Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..
[49] Matthew K. Tam,et al. A feasibility approach for constructing combinatorial designs of circulant type , 2017, J. Comb. Optim..
[50] Jason Schaad. Modeling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex sets , 2010 .
[51] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .
[52] W. Cheney,et al. Proximity maps for convex sets , 1959 .
[53] V Elser,et al. Searching with iterated maps , 2007, Proceedings of the National Academy of Sciences.
[54] Jonathan M. Borwein,et al. Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem , 2015, J. Glob. Optim..
[55] Jonathan M. Borwein,et al. Global convergence of a non-convex Douglas–Rachford iteration , 2012, J. Glob. Optim..
[56] Yair Censor,et al. New Douglas-Rachford Algorithmic Structures and Their Convergence Analyses , 2015, SIAM J. Optim..
[57] Karin Schwab,et al. Best Approximation In Inner Product Spaces , 2016 .
[58] Heinz H. Bauschke,et al. On the Finite Convergence of the Douglas-Rachford Algorithm for Solving (Not Necessarily Convex) Feasibility Problems in Euclidean Spaces , 2017, SIAM J. Optim..
[59] Heinz H. Bauschke,et al. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.
[60] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[61] D. Russell Luke,et al. Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility , 2013, IEEE Transactions on Signal Processing.
[62] Heinz H. Bauschke,et al. Affine Nonexpansive Operators, Attouch–Théra Duality and the Douglas–Rachford Algorithm , 2016, 1603.09418.
[63] Matthew K. Tam,et al. A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting , 2017, J. Glob. Optim..