Contextual Part Analogies in 3D Objects

In this paper we address the problem of finding analogies between parts of 3D objects. By partitioning an object into meaningful parts and finding analogous parts in other objects, not necessarily of the same type, many analysis and modeling tasks could be enhanced. For instance, partial match queries can be formulated, annotation of parts in objects can be utilized, and modeling-by-parts applications could be supported. We define a similarity measure between two parts based not only on their local signatures and geometry, but also on their context within the shape to which they belong.In our approach, all objects are hierarchically segmented (e.g. using the shape diameter function), and each part is given a local signature. However, to find corresponding parts in other objects we use a context enhanced part-in-whole matching. Our matching function is based on bi-partite graph matching and is computed using a flow algorithm which takes into account both local geometrical features and the partitioning hierarchy. We present results on finding part analogies among numerous objects from shape repositories, and demonstrate sub-part queries using an implementation of a simple search and retrieval application. We also demonstrate a simple annotation tool that carries textual tags of object parts from one model to many others using analogies, laying a basis for semantic text based search.

[1]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[2]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[3]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[4]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[5]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[6]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[7]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[8]  N. Mitra,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, SIGGRAPH 2009.

[9]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[10]  Cohen-OrDaniel,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008 .

[11]  Marco Attene,et al.  Semantic Annotation of 3D Surface Meshes Based on Feature Characterization , 2007, SAMT.

[12]  John M. Schreiner,et al.  Inter-surface mapping , 2004, SIGGRAPH 2004.

[13]  R. Zabih,et al.  Spatially coherent clustering using graph cuts , 2004, CVPR 2004.

[14]  Franca Giannini,et al.  Deriving Functionality from 3D Shapes: Ontology Driven Annotation and Retrieval , 2007 .

[15]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[16]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[17]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[18]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[19]  Marco Attene,et al.  Computational methods for understanding 3D shapes , 2006, Comput. Graph..

[20]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[21]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[22]  Ariel Shamir,et al.  Pose-Oblivious Shape Signature , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[25]  Vladimir Kolmogorov,et al.  Spatially coherent clustering using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[26]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[27]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[28]  Marcin Novotni,et al.  Correspondence Generation and Matching of 3D Shape Subparts , 2005 .

[29]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[30]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[31]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[32]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[33]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[34]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[35]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[37]  Thomas A. Funkhouser,et al.  Shape-based retrieval and analysis of 3d models , 2005, CACM.

[38]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[39]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..