Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds

Abstract. Multi-scale interactions between the main players of the atmospheric water cycle are poorly understood, even in the present-day climate, and represent one of the main sources of uncertainty among future climate projections. Here, we present a method to downscale observations of relative humidity available from the Sondeur Atmosphérique du Profil d'Humidité Intertropical par Radiométrie (SAPHIR) passive microwave sounder at a nominal horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. With the scattering ratio profiles as covariates, an iterative approach applied to a non-parametric regression model based on a quantile random forest is used. This allows us to effectively incorporate into the predicted relative humidity structure the high-resolution variability from cloud profiles. The finer-scale water vapour structure is hereby deduced from the indirect physical correlation between relative humidity and the lidar observations. Results are presented for tropical ice clouds over the ocean: based on the coefficient of determination (with respect to the observed relative humidity) and the continuous rank probability skill score (with respect to the climatology), we conclude that we are able to successfully predict, at the resolution of cloud measurements, the relative humidity along the whole troposphere, yet ensure the best possible coherence with the values observed by SAPHIR. By providing a method to generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud profiles, this work will help revisit some of the current key barriers in atmospheric science. A sample dataset of simultaneous co-located scattering ratio profiles of tropical ice clouds and observations of relative humidity downscaled at the resolution of cloud measurements is available at https://doi.org/10.14768/20181022001.1 (Carella et al., 2019).

[1]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[2]  H. Chepfer,et al.  Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade , 2017 .

[3]  David M. Winker,et al.  CLOUDSAT AND CALIPSO WITHIN THE A-TRAIN Ten Years of Actively Observing the Earth System , 2018 .

[4]  H. Chepfer,et al.  Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations , 2017 .

[5]  D. Jacob,et al.  Parameterization of Subgrid-Scale Processes , 2017 .

[6]  S. Klein,et al.  Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review , 2017, Surveys in Geophysics.

[7]  Susann Tegtmeier,et al.  Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. , 2017, Atmospheric chemistry and physics.

[8]  H. Chepfer,et al.  Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud‐radiation interactions , 2017 .

[9]  F. Guichard,et al.  A short review of numerical cloud-resolving models , 2017 .

[10]  H. Chepfer,et al.  Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors , 2017, Surveys in Geophysics.

[11]  H. Chepfer,et al.  Remote sensing ice supersaturation inside and near cirrus clouds: a case study in the subtropics , 2016 .

[12]  S. Bony,et al.  Coupling between lower‐tropospheric convective mixing and low‐level clouds: Physical mechanisms and dependence on convection scheme , 2016, Journal of advances in modeling earth systems.

[13]  M. Wild,et al.  Detection of dimming/brightening in Italy from homogenized all-sky andclear-sky surface solar radiation records and underlying causes (1959–2013) , 2016 .

[14]  H. Chepfer,et al.  Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO , 2016 .

[15]  H. Brogniez,et al.  Estimating Confidence Intervals around Relative Humidity Profiles from Satellite Observations: Application to the SAPHIR Sounder , 2016 .

[16]  Brian E. Eaton,et al.  Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations , 2016 .

[17]  Benoit Hingray,et al.  An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross‐validation experiment , 2016 .

[18]  Olivier Mestre,et al.  Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics , 2016 .

[19]  M. Déqué,et al.  Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations , 2016, Climate Dynamics.

[20]  Chengxing Zhai,et al.  An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations , 2015 .

[21]  H. Brogniez,et al.  Validation of Upper-Tropospheric Humidity from SAPHIR on board Megha-Tropiques Using Tropical Soundings , 2015 .

[22]  H. Brogniez,et al.  A layer-averaged relative humidity profile retrieval for microwave observations: design and results for the Megha-Tropiques payload , 2015 .

[23]  Viju O. John,et al.  An Assessment of SAPHIR Calibration Using Quality Tropical Soundings , 2015 .

[24]  J. Kay,et al.  How much snow falls on the Antarctic ice sheet , 2014 .

[25]  Christopher A. T. Ferro,et al.  Fair scores for ensemble forecasts , 2014 .

[26]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[27]  David D. Turner,et al.  Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis , 2013 .

[28]  G. Cesana,et al.  Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO‐GOCCP , 2013 .

[29]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[30]  Peter M. Atkinson,et al.  Downscaling in remote sensing , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[31]  Laurence Eymard,et al.  Expected improvements in the atmospheric humidity profile retrieval using the Megha‐Tropiques microwave payload , 2013 .

[32]  H. Chepfer,et al.  On the origin of subvisible cirrus clouds in the tropical upper troposphere , 2012 .

[33]  S. Bony,et al.  The ‘too few, too bright’ tropical low‐cloud problem in CMIP5 models , 2012 .

[34]  G. Cesana,et al.  How well do climate models simulate cloud vertical structure? A comparison between CALIPSO‐GOCCP satellite observations and CMIP5 models , 2012 .

[35]  Budiman Minasny,et al.  A general method for downscaling earth resource information , 2012, Comput. Geosci..

[36]  Paul W. Stackhouse,et al.  The Global Character of the Flux of Downward Longwave Radiation , 2012 .

[37]  Tristan S. L'Ecuyer,et al.  The retrieval of warm rain from CloudSat , 2011 .

[38]  David M. Winker,et al.  Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties , 2011 .

[39]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[40]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[41]  H. Chepfer,et al.  Properties of cirrus and subvisible cirrus from nighttime Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP), related to atmospheric dynamics and water vapor , 2011 .

[42]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[43]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[44]  Xianglei Huang,et al.  Interannual variations of tropical upper tropospheric humidity and tropical rainy‐region SST: Comparisons between models, reanalyses, and observations , 2010 .

[45]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[46]  Mark D. Zelinka,et al.  Why is longwave cloud feedback positive , 2010 .

[47]  S. Bony,et al.  The GCM‐Oriented CALIPSO Cloud Product (CALIPSO‐GOCCP) , 2010 .

[48]  Leopold Haimberger,et al.  Interannual changes in mass consistent energy budgets from ERA‐Interim and satellite data , 2010 .

[49]  H. Brogniez,et al.  A study of the free tropospheric humidity interannual variability using meteosat data and an advection-condensation transport model. , 2009 .

[50]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[51]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[52]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[53]  Estelle Obligis,et al.  An Improved Retrieval Algorithm for Water Vapor Retrieval: Application to the Envisat Microwave Radiometer , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Sally A. McFarlane,et al.  Significant decadal brightening of downwelling shortwave in the continental United States , 2009 .

[55]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[56]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[57]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[58]  Takemasa Miyoshi,et al.  Data assimilation of CALIPSO aerosol observations , 2009 .

[59]  A. Mangold,et al.  Ice supersaturations and cirrus cloud crystal numbers , 2008 .

[60]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[61]  S. Bony,et al.  Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model , 2008 .

[62]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[63]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[64]  Andrew Gettelman,et al.  The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum , 2008 .

[65]  Ruiliang Pu,et al.  Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval , 2008, Sensors.

[66]  David S. Richardson,et al.  On the effect of ensemble size on the discrete and continuous ranked probability scores , 2008 .

[67]  Mathieu Vrac,et al.  Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe , 2007 .

[68]  Jiwen Fan,et al.  Effects of aerosols and relative humidity on cumulus clouds , 2007 .

[69]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[70]  Johannes Schmetz,et al.  Diurnal variation of upper tropospheric humidity and its relations to convective activities over tropical Africa , 2007 .

[71]  Bruce A. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part II: Tropical Convective Cloud Objects during 1998 El Niño and Evidence for Supporting the Fixed Anvil Temperature Hypothesis , 2007 .

[72]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[73]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[74]  Q. Fu,et al.  The impact of cirrus clouds on tropical troposphere-to-stratosphere transport , 2006 .

[75]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[76]  M. Shupe,et al.  Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA , 2006 .

[77]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[78]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[79]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[80]  William B. Rossow,et al.  Characterizing Tropical Cirrus Life Cycle, Evolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite Observations , 2004 .

[81]  Anthony J. Broccoli,et al.  On the Use of Cloud Forcing to Estimate Cloud Feedback , 2004 .

[82]  N. Eguchi,et al.  Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere , 2004 .

[83]  B. Soden,et al.  Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model , 2004 .

[84]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[85]  Alexei Korolev,et al.  Supersaturation of Water Vapor in Clouds , 2003 .

[86]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[87]  David M. Winker,et al.  The CALIPSO mission , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[88]  M. Wand,et al.  Geoadditive models , 2003 .

[89]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[90]  Edgar L. Andreas,et al.  An annual cycle of Arctic surface cloud forcing at SHEBA : The surface heat budget of arctic ocen (SHEBA) , 2002 .

[91]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[92]  R. Pierrehumbert The hydrologic cycle in deep-time climate problems , 2002, Nature.

[93]  Jean-Pierre Cammas,et al.  Mesoscale model cloud scheme assessment using satellite observations , 2002 .

[94]  A. Thompson,et al.  Tropical ozone as an indicator of deep convection , 2002 .

[95]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[96]  Q. Fu,et al.  Tropical Convection and the Energy Balance at the Top of the Atmosphere , 2001 .

[97]  Garrison Sposito,et al.  Upscaling and downscaling methods for environmental research , 2001 .

[98]  L. Pfister,et al.  A conceptual model of the dehydration of air due to freeze‐drying by optically thin, laminar cirrus rising slowly across the tropical tropopause , 2001 .

[99]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[100]  Marc F. P. Bierkens,et al.  Upscaling and downscaling methods for environmental research , 2000 .

[101]  H. Storch,et al.  The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods , 1999 .

[102]  E. Browell,et al.  The impact of subvisible cirrus clouds near the tropical tropopause on stratospheric water vapor , 1998 .

[103]  R. Pierrehumbert Lateral mixing as a source of subtropical water vapor , 1998 .

[104]  Xiangqian Wu,et al.  Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels , 1997, IEEE Trans. Geosci. Remote. Sens..

[105]  L. Pfister,et al.  Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause , 1996 .

[106]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[107]  Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters , 1995 .

[108]  Petra M. Udelhofen,et al.  Influence of tropical cloud systems on the relative humidity in the upper troposphere , 1995 .

[109]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[110]  Trevor Hastie,et al.  [Generalized Additive Models]: Rejoinder , 1986 .

[111]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[112]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[113]  A. Betts,et al.  Convection in GATE , 1981 .

[114]  Philip B. Russell,et al.  Lidar measurement of particles and gases by elastic backscattering and differential absorption , 1976 .