CONVERGENCE OF A SECOND-ORDER CONVEX-SPLITTING , FINITE DIFFERENCE SCHEME FOR THE THREE-DIMENSIONAL CAHN – HILLIARD EQUATION

In this paper we present an unconditionally solvable and energy stable second order numerical scheme for the three-dimensional (3D) Cahn–Hilliard (CH) equation. The scheme is a twostep method based on a second order convex splitting of the physical energy, combined with a centered difference in space. The equation at the implicit time level is nonlinear but represents the gradients of a strictly convex function and is thus uniquely solvable, regardless of time step-size. The nonlinear equation is solved using an efficient nonlinear multigrid method. In addition, a global in time H2 h bound for the numerical solution is derived at the discrete level, and this bound is independent on the final time. As a consequence, an unconditional convergence (for the time step s in terms of the spatial grid size h) is established, in a discrete Ls (0,T ;H 2 h) norm, for the proposed second order scheme. The results of numerical experiments are presented and confirm the efficiency and accuracy of the scheme.

[1]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[2]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[3]  Jie Shen,et al.  An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System , 2013 .

[4]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[5]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[6]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[7]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[8]  Cheng Wang,et al.  Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation , 2012, J. Comput. Phys..

[9]  Cheng Wang,et al.  A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2014, J. Sci. Comput..

[10]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[11]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[12]  Steven M. Wise,et al.  Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation , 2011, SIAM J. Numer. Anal..

[13]  Cheng Wang,et al.  A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..

[14]  Luis A. Caffarelli,et al.  An L∞ bound for solutions of the Cahn-Hilliard equation , 1995 .

[15]  Bath Ba THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS , 1993 .

[16]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[17]  Cheng Wang,et al.  Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations , 2014, J. Comput. Phys..

[18]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[19]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[20]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[21]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[22]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[23]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[24]  John W. Barrett,et al.  Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility , 1999, Math. Comput..

[25]  Zhizhang Chen Unconditionally stable finite-difference time-domain methods and their applications , 2004, Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004..

[26]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[27]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[28]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[29]  Giorgio Fusco,et al.  The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions , 1993 .

[30]  Steven M. Wise,et al.  Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Darcy-Stokes System , 2013, SIAM J. Numer. Anal..

[31]  Khaled Omrani,et al.  Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .

[32]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[33]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[34]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[35]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[36]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[37]  James M. Hyman,et al.  The convergence of mimetic discretization for rough grids , 2004 .

[38]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[39]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[40]  Xiaobing Feng,et al.  Analysis of interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow , 2013, 1310.7504.

[41]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[42]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[43]  Cheng Wang,et al.  Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation , 2015, Math. Comput..

[44]  David Kay,et al.  Efficient Numerical Solution of Cahn-Hilliard-Navier-Stokes Fluids in 2D , 2007, SIAM J. Sci. Comput..

[45]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[46]  Mikhail Shashkov,et al.  Mimetic finite difference operators for second-order tensors on unstructured grids , 2002 .

[47]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[48]  Steven M. Wise,et al.  Global Smooth Solutions of the Three-dimensional Modified Phase Field Crystal Equation , 2010 .