Critical Parameters Determining Standard Radiotherapy Treatment Outcome for Glioblastoma Multiforme: A Computer Simulation

The aim of this paper is to investigate the most critical parameters determining radiotherapy treatment outcome in terms of tumor cell kill for glioblastoma multiforme tumors by using an already developed simulation model of in vivo tumor response to radiotherapy.

[1]  L. Dillehay,et al.  A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division. , 1990, Radiation research.

[2]  Konstantina S. Nikita,et al.  In silico radiation oncology: combining novel simulation algorithms with current visualization techniques , 2002, Proc. IEEE.

[3]  C. Perez,et al.  Principles and Practice of Radiation Oncology , 1987 .

[4]  A. Hanks Canada , 2002 .

[5]  J. O’Donoghue,et al.  The response of tumours with Gompertzian growth characteristics to fractionated radiotherapy. , 1997, International journal of radiation biology.

[6]  S. Pileri,et al.  Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67 , 2004, Acta Neuropathologica.

[7]  W Düchting,et al.  Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy. , 1992, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[8]  S. Leenstra,et al.  Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas. , 1997, European journal of cancer.

[9]  J. Little,et al.  Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status , 2007, Acta oncologica.

[10]  C ASSANASEN,et al.  GLIOBLASTOMA MULTIFORME. , 1965, Virginia medical monthly.

[11]  W. Dewey,et al.  p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. , 1996, International journal of radiation oncology, biology, physics.

[12]  C. Wilson,et al.  Chemotherapeutic implications of growth fraction and cell cycle time in glioblastomas. , 1975, Journal of neurosurgery.

[13]  C B Wilson,et al.  Cell kinetic analyses of human malignant brain tumors (gliomas) , 1979, Cancer.

[14]  S. Morikawa,et al.  Estimation of Volume Doubling Time and Cell Loss in an Experimental Rat Glioma Model in Vivo , 1998, Acta Neurochirurgica.

[15]  A. Taghian,et al.  Repopulation capacity during fractionated irradiation of squamous cell carcinomas and glioblastomas in vitro. , 1997, International journal of radiation oncology, biology, physics.

[16]  Konstantina S. Nikita,et al.  A computer simulation of in vivo tumour growth and response to radiotherapy: New algorithms and parametric results , 2006, Comput. Biol. Medicine.

[17]  J. D. Chapman,et al.  Single-hit mechanism of tumour cell killing by radiation , 2003, International journal of radiation biology.

[18]  M. Williams,et al.  Basic clinical radiobiology , 1994, British Journal of Cancer.

[19]  C B Wilson,et al.  Current status of population kinetics in gliomas. , 1977, Bulletin du cancer.

[20]  R. Dale,et al.  Inclusion of molecular biotherapies with radical radiotherapy: modeling of combined modality treatment schedules. , 1999, International journal of radiation oncology, biology, physics.

[21]  N. Laperriere,et al.  Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  C C Ling,et al.  Radiation-induced apoptosis: relevance to radiotherapy. , 1995, International journal of radiation oncology, biology, physics.

[23]  C. Hess,et al.  Lack of interferon beta-induced radiosensitization in four out of five human glioblastoma cell lines. , 2003, International journal of radiation oncology, biology, physics.

[24]  H. Watanabe,et al.  Differential effects of the insulin-like growth factor I receptor on radiosensitivity and spontaneous necrosis formation of human glioblastoma cells grown in multicellular spheroids. , 1999, Experimental cell research.

[25]  PETER ALEXANDER,et al.  Cancer Chemotherapy , 1968, Nature.

[26]  K. Jellinger,et al.  Glioblastoma multiforme: Morphology and biology , 2005, Acta Neurochirurgica.

[27]  R. Mirzayans,et al.  Influence of Oxygen on the Radiosensitivity of Human Glioma Cell Lines , 2003, American journal of clinical oncology.

[28]  F. Preffer,et al.  Cell proliferation kinetics in human tumor xenografts measured with iododeoxyuridine labeling and flow cytometry: a study of heterogeneity and a comparison between different methods of calculation and other proliferation measurements. , 1995, Cancer research.

[29]  T. Hoshino Cell kinetics of glial tumors. , 1992, Revue neurologique.

[30]  P. Hahnfeldt,et al.  Measurement of potential doubling time for human tumor xenografts using the cytokinesis-block method. , 1996, Cancer research.

[31]  J. H. Scarffe,et al.  Cancer Medicine , 1982, British Journal of Cancer.

[32]  D. Yew,et al.  Apoptosis in Astrocytomas with Different Grades of Malignancy , 1998, Acta Neurochirurgica.

[33]  M. Israel,et al.  The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Khalili,et al.  Cell cycle regulation of NF-κB-binding activity in cells from human glioblastomas , 2001 .

[35]  S. Tribius,et al.  ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. , 2001, International journal of radiation oncology, biology, physics.

[36]  G. Steel,et al.  The Case Against Apoptosis , 2001, Acta oncologica.

[37]  A. Czirók,et al.  Locomotion and proliferation of glioblastoma cells in vitro: statistical evaluation of videomicroscopic observations. , 1999, Journal of neurosurgery.

[38]  H D Suit,et al.  The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice. , 1995, International journal of radiation oncology, biology, physics.

[39]  J. Denekamp,et al.  Cell kinetics and radiation biology. , 1986, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[40]  Georgios S Stamatakos,et al.  A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. , 2004, Journal of theoretical biology.