Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells

We introduce new hole-selective contacts for next-generation perovskite photovoltaics and point to design paths for molecular engineering of perfect interfaces.

[1]  B. Rech,et al.  On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[2]  T. Taliercio,et al.  Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics , 2018, Applied Surface Science.

[3]  Dieter Neher,et al.  Measuring Aging Stability of Perovskite Solar Cells , 2018 .

[4]  R. Friend,et al.  Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. , 2014, The journal of physical chemistry letters.

[5]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[6]  M. Green,et al.  Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low‐Temperature‐Processed Planar‐Structure Hybrid Perovskite Solar Cells , 2018 .

[7]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[8]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[9]  R. Lu,et al.  Correction: Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect , 2017, Chemical science.

[10]  D. Ginger,et al.  Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. , 2016, Chemical reviews.

[11]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[12]  Alessandro Troisi,et al.  What Is the Best Anchoring Group for a Dye in a Dye-Sensitized Solar Cell? , 2012, The journal of physical chemistry letters.

[13]  Yang Yang,et al.  High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells , 2018, Science.

[14]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[15]  Henk J. Bolink,et al.  Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers , 2016 .

[16]  Philip Schulz,et al.  Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells , 2015 .

[17]  D. Aswal,et al.  Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. , 2016, Chemical reviews.

[18]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[19]  M. Grigoraş,et al.  Electrochemically generated networks from poly(4,4′-triphenylamine-co-9,9-dioctyl-2,7-fluorene) with grafts containing carbazole groups , 2014, Journal of Polymer Research.

[20]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[21]  Bilal R. Kaafarani,et al.  Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications , 2017 .

[22]  U. Rau,et al.  Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations , 2018 .

[23]  T. Sekiguchi,et al.  Influence of a Hole-Transport Layer on Light-Induced Degradation of Mixed Organic–Inorganic Halide Perovskite Solar Cells , 2019, ACS Applied Energy Materials.

[24]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[25]  S. Albrecht,et al.  Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells , 2018, Advanced Energy Materials.

[26]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[27]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[28]  Bernd Rech,et al.  Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. , 2017, Optics express.

[29]  N. Koch,et al.  Reduced Interface‐Mediated Recombination for High Open‐Circuit Voltages in CH3NH3PbI3 Solar Cells , 2017, Advanced materials.

[30]  K. Mueller,et al.  Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly , 2017 .

[31]  M. Can,et al.  Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells , 2019, Energy & Environmental Science.

[32]  M. Halik,et al.  Self-assembled monolayer field-effect transistors based on oligo-9,9'-dioctylfluorene phosphonic acids. , 2017, Nanoscale.

[33]  Neal R. Armstrong,et al.  Phosphonic Acid Modification of Indium−Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies† , 2008 .

[34]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[35]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[36]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[37]  T. Malinauskas,et al.  Long-Term Stability of the Oxidized Hole-Transporting Materials used in Perovskite Solar Cells. , 2018, Chemistry.

[38]  T. Vatanatham,et al.  Kinetic study of styrene and methyl methacrylate emulsion polymerization induced by cumene hydroperoxide/tetraethylenepentamine , 2015, Journal of Polymer Research.

[39]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[40]  J. Brédas,et al.  Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry , 2010 .

[41]  V. Baeten,et al.  Phenolic compound explorer: A mid-infrared spectroscopy database , 2017 .

[42]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[43]  Hwan-Kyu Kim,et al.  Novel Carbazole-Based Hole-Transporting Materials with Star-Shaped Chemical Structures for Perovskite-Sensitized Solar Cells. , 2015, ACS applied materials & interfaces.

[44]  G. Niaura,et al.  SERS of the Positive Charge Bearing Pyridinium Ring Terminated Self-Assembled Monolayers: Structure and Bonding Spectral Markers , 2015 .

[45]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[46]  N. McIntyre,et al.  Delivering octadecylphosphonic acid self-assembled monolayers on a Si wafer and other oxide surfaces. , 2006, The journal of physical chemistry. B.

[47]  S. Barlow,et al.  Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms , 2018 .

[48]  N. Koch,et al.  Advanced surface modification of indium tin oxide for improved charge injection in organic devices. , 2005, Journal of the American Chemical Society.

[49]  Xia Hong,et al.  Synergistic Effect of Elevated Device Temperature and Excess Charge Carriers on the Rapid Light‐Induced Degradation of Perovskite Solar Cells , 2019, Advanced materials.

[50]  Peter Strohriegl,et al.  Carbazole-containing polymers: synthesis, properties and applications , 2003 .

[51]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[52]  A. Raman,et al.  Functionalization of nickel oxide using alkylphosphonic acid self-assembled monolayers , 2008 .

[53]  A. Jen,et al.  Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displaced π−π Stacking Interactions , 2006 .

[54]  M. Nazeeruddin,et al.  Pyridination of hole transporting material in perovskite solar cells questions the long-term stability , 2018 .

[55]  Jean-François Guillemoles,et al.  Contactless mapping of saturation currents of solar cells by photoluminescence , 2012 .

[56]  Rebecca A. Belisle,et al.  Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells , 2016 .

[57]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[58]  B. Rech,et al.  Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance , 2019, Sustainable Energy & Fuels.

[59]  Peter J. Hotchkiss,et al.  Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study , 2009 .

[60]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[61]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[62]  Zhiping Xu,et al.  Molecular-channel driven actuator with considerations for multiple configurations and color switching , 2018, Nature Communications.

[63]  Anna De Girolamo Del Mauro,et al.  Synthesis, characterization, and use as emissive layer of white organic light emitting diodes of the highly isotactic poly(N‐pentenyl‐carbazole) , 2015 .

[64]  C. Frisbie,et al.  Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics , 1995 .

[65]  Claudia Felser,et al.  Weyl Semimetals as Hydrogen Evolution Catalysts , 2017, Advanced materials.

[66]  Fabio Biscarini,et al.  Self-assembled monolayers in organic electronics. , 2017, Chemical Society reviews.

[67]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[68]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[69]  David Cahen,et al.  Halide Perovskites: Is It All about the Interfaces? , 2018, Chemical reviews.

[70]  Frederik C. Krebs,et al.  Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates , 2015 .

[71]  A. Terfort,et al.  Self-assembled monolayers of aromatic pyrrole derivatives: Electropolymerization and electrocopolymerization with pyrrole , 2017 .

[72]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[73]  W. Zisman,et al.  Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids☆ , 1946 .

[74]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[75]  S. Marder,et al.  Adsorption studies of a phosphonic acid on ITO: film coverage, purity, and induced electronic structure changes. , 2014, Physical chemistry chemical physics : PCCP.

[76]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[77]  P. Würfel,et al.  Verification of a generalized Planck law for luminescence radiation from silicon solar cells , 1992 .

[78]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[79]  Hyunsu Cho,et al.  Built‐In Haze Glass‐Fabric Reinforced Siloxane Hybrid Film for Efficient Organic Light‐Emitting Diodes (OLEDs) , 2018, Advanced Functional Materials.

[80]  Li Wang,et al.  Corrigendum: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference , 2013, Nature Communications.

[81]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[82]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[83]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[84]  Philip Schulz,et al.  Defect Tolerance in Methylammonium Lead Triiodide Perovskite , 2016 .

[85]  S. Hecht,et al.  Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self‐Assembled Monolayers , 2014 .

[86]  H. Hoegl On Photoelectric Effects in Polymers and Their Sensitization by Dopants1 , 1965 .

[87]  F. Hoffmann,et al.  Infrared reflection-absorption spectroscopy of adsorbed molecules , 1983 .

[88]  Edith Beilis,et al.  Preparation and characterization of alkylphosphonic acid self-assembled monolayers on titanium alloy by chemisorption and electrochemical deposition. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[89]  Hongwei Zhou,et al.  Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate , 2016 .

[90]  B. Rech,et al.  21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces , 2019, ACS Energy Letters.

[91]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[92]  Sang Jin Park,et al.  Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination , 2017 .

[93]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[94]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[95]  Andreas Hirsch,et al.  The Potential of Molecular Self‐Assembled Monolayers in Organic Electronic Devices , 2011, Advanced materials.

[96]  R. T. Ross,et al.  Some Thermodynamics of Photochemical Systems , 1967 .

[97]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[98]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[99]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[100]  B. Rech,et al.  High open circuit voltages in pin-type perovskite solar cells through strontium addition , 2018, Sustainable Energy & Fuels.

[101]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[102]  S. Albrecht,et al.  Influence of doped charge transport layers on efficient perovskite solar cells , 2018 .