Fermi Arc Reconstruction in Synthetic Photonic Lattice.

The chiral surface states of Weyl semimetals have an open Fermi surface called a Fermi arc. At the interface between two Weyl semimetals, these Fermi arcs are predicted to hybridize and alter their connectivity. In this Letter, we numerically study a one-dimensional (1D) dielectric trilayer grating where the relative displacements between adjacent layers play the role of two synthetic momenta. The lattice emulates 3D crystals without time-reversal symmetry, including Weyl semimetal, nodal line semimetal, and Chern insulator. Besides showing the phase transition between Weyl semimetal and Chern insulator at telecom wavelength, this system allows us to observe the Fermi arc reconstruction between two Weyl semimetals, confirming the theoretical predictions.

[1]  E. Mazur,et al.  Experimental probe of twist angle–dependent band structure of on-chip optical bilayer photonic crystal , 2023, Science advances.

[2]  E. Mazur,et al.  On-chip optical twisted bilayer photonic crystal , 2023, 2303.02325.

[3]  Tao Li,et al.  Observation of Weyl Interface States in Non-Hermitian Synthetic Photonic Systems. , 2023, Physical review letters.

[4]  M. Vergniory,et al.  Atomically Sharp Internal Interface in a Chiral Weyl Semimetal Nanowire. , 2022, Nano letters.

[5]  J. Bravo-Abad,et al.  Probing and harnessing photonic Fermi arc surface states using light-matter interactions , 2022, Science advances.

[6]  Shengyuan A. Yang,et al.  Topological Chern vectors in three-dimensional photonic crystals , 2022, Nature.

[7]  M. Vergniory,et al.  Transport signatures of Fermi arcs at twin boundaries in Weyl materials , 2022, 2207.14109.

[8]  B. Bradlyn,et al.  Vectorial Bulk‐Boundary Correspondence for 3D Photonic Chern Insulators , 2022, Advanced Optical Materials.

[9]  Y. Jia,et al.  Self-localized topological states in three dimensions , 2022, Physical Review B.

[10]  Shutian Liu,et al.  Topological phase transitions and Weyl semimetal phases in chiral photonic metamaterials , 2022, New Journal of Physics.

[11]  L. Privitera,et al.  Tunable interface states between Floquet-Weyl semimetals , 2022, Physical Review B.

[12]  R. Egger,et al.  Transport, refraction, and interface arcs in junctions of Weyl semimetals , 2022, Physical Review B.

[13]  X. Letartre,et al.  Analytical non-Hermitian description of photonic crystals with arbitrary lateral and transverse symmetry , 2022, Physical Review A.

[14]  Won-Jae Joo,et al.  Synthetic Topological Nodal Phase in Bilayer Resonant Gratings. , 2022, Physical review letters.

[15]  Bilong Liu,et al.  Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates , 2021, Applied Sciences.

[16]  Ze-Guo Chen,et al.  Experimental Realization of Weyl Exceptional Rings in a Synthetic Three-Dimensional Non-Hermitian Phononic Crystal. , 2021, Physical review letters.

[17]  Thibaud Louvet,et al.  Topological Properties of Photonic Bands with Synthetic Momentum , 2021, 2111.02843.

[18]  E. Dagotto,et al.  Semi-Dirac and Weyl fermions in transition metal oxides , 2021, Physical Review B.

[19]  B. Bradlyn,et al.  Cubic 3D Chern photonic insulators with orientable large Chern vectors , 2021, Nature Communications.

[20]  X. Letartre,et al.  Magic configurations in moiré superlattice of bilayer photonic crystals: Almost-perfect flatbands and unconventional localization , 2021, Physical Review Research.

[21]  H. Ding,et al.  Experimental perspective on three-dimensional topological semimetals , 2021 .

[22]  M. Segev,et al.  Topological photonics in synthetic dimensions , 2021, Advances in Optics and Photonics.

[23]  D. Hunger,et al.  Open-Cavity in Closed-Cycle Cryostat as a Quantum Optics Platform , 2021, PRX Quantum.

[24]  Jie Song,et al.  Photonic topological Weyl degeneracies and ideal type-I Weyl points in the gyromagnetic metamaterials , 2021 .

[25]  G. Murthy,et al.  Fermi arc reconstruction at the interface of twisted Weyl semimetals , 2021, Physical Review B.

[26]  Hua Cheng,et al.  Vortical Reflection and Spiraling Fermi Arcs with Weyl Metamaterials. , 2020, Physical review letters.

[27]  Y. Kivshar,et al.  Room-temperature lasing from nanophotonic topological cavities , 2020, Light, science & applications.

[28]  Timur K. Kim,et al.  Observation and control of maximal Chern numbers in a chiral topological semimetal , 2020, Science.

[29]  K. Malmir,et al.  Universal Scaling in the Dynamic Hysteresis, and Non-Markovian Dynamics, of a Tunable Optical Cavity. , 2020, Physical review letters.

[30]  M. S. Skolnick,et al.  Chiral topological photonics with an embedded quantum emitter , 2019, Optica.

[31]  Yan-Feng Chen,et al.  Hybrid Acoustic Topological Insulator in Three Dimensions. , 2019, Physical Review Letters.

[32]  G. Murthy,et al.  Surface states and arcless angles in twisted Weyl semimetals , 2019, Physical Review Research.

[33]  Yiming Li,et al.  Tunable Open‐Access Microcavities for Solid‐State Quantum Photonics and Polaritonics , 2019, Advanced Quantum Technologies.

[34]  Zhengyou Liu,et al.  Probing Weyl Physics with One-Dimensional Sonic Crystals. , 2019, Physical review letters.

[35]  L. Kuipers,et al.  Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing , 2018, Science Advances.

[36]  H. Ishida,et al.  Fermi arc engineering at the interface between two Weyl semimetals , 2018, Physical Review B.

[37]  D. Vanderbilt Berry Phases in Electronic Structure Theory , 2018 .

[38]  C. Jamois,et al.  Tamm plasmon photonic crystals: From bandgap engineering to defect cavity , 2018, APL Photonics.

[39]  X. Letartre,et al.  Tailoring the Local Density of Optical States and Directionality of Light Emission by Symmetry Breaking , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  B. Wang,et al.  Photonic Weyl phase transition in dynamically modulated brick-wall waveguide arrays. , 2018, Optics express.

[41]  R. Katsumi,et al.  Topological photonic crystal nanocavity laser , 2018, Communications Physics.

[42]  M. Serra-Garcia,et al.  Axial-field-induced chiral channels in an acoustic Weyl system , 2018, Nature Physics.

[43]  Samit Kumar Gupta,et al.  Experimental Observation of Acoustic Weyl Points and Topological Surface States , 2018, Physical Review Applied.

[44]  X. Letartre,et al.  Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones. , 2017, Physical review letters.

[45]  Vatsal Dwivedi Fermi arc reconstruction at junctions between Weyl semimetals , 2017, 1711.06285.

[46]  E. Waks,et al.  A topological quantum optics interface , 2017, Science.

[47]  Feng Li,et al.  Weyl points and Fermi arcs in a chiral phononic crystal , 2017, Nature Physics.

[48]  Hui Liu,et al.  Optical interface states protected by synthetic Weyl points , 2017, 1708.05664.

[49]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[50]  A. Burkov Weyl Metals , 2017, 1704.06660.

[51]  S. Fan,et al.  Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension , 2016, Nature Communications.

[52]  Kevin P. Chen,et al.  Experimental observation of optical Weyl points and Fermi arc-like surface states , 2016, Nature Physics.

[53]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[54]  K. Nomura,et al.  Universal charge and current on magnetic domain walls in Weyl semimetals , 2016, 1607.07012.

[55]  T. Ohtsuki,et al.  Comparative study of Weyl semimetal and topological/Chern insulators: Thin-film point of view , 2016, 1606.02091.

[56]  Shou-Cheng Zhang,et al.  Five-dimensional generalization of the topological Weyl semimetal , 2016, 1604.07459.

[57]  E. Witten Three Lectures On Topological Phases Of Matter , 2015, 1510.07698.

[58]  M. Xiao,et al.  Synthetic gauge flux and Weyl points in acoustic systems , 2015, Nature Physics.

[59]  Z. Q. Zhang,et al.  Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems , 2015, 1503.06295.

[60]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[61]  T. Dubček,et al.  Weyl Points in Three-Dimensional Optical Lattices: Synthetic Magnetic Monopoles in Momentum Space. , 2014, Physical review letters.

[62]  M. N. Makhonin,et al.  Strong exciton-photon coupling in open semiconductor microcavities , 2014, 1403.4830.

[63]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[64]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[65]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[66]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[67]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[68]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[69]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[70]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[71]  S. Murakami,et al.  Universal phase diagrams for the quantum spin Hall systems , 2008, 0806.3309.

[72]  Peter Russer,et al.  Electromagnetics, Microwave Circuit, And Antenna Design for Communications Engineering, Second Edition (Artech House Antennas and Propagation Library) , 2006 .

[73]  F. Haldane Berry curvature on the fermi surface: anomalous Hall effect as a topological fermi-liquid property. , 2004, Physical review letters.

[74]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[75]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[76]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[77]  Per-Olov Löwdin,et al.  A Note on the Quantum‐Mechanical Perturbation Theory , 1951 .

[78]  Hai Yang,et al.  Weyl points and nodal lines in acoustic synthetic parameter space , 2021, Applied Physics Express.

[79]  Wen Hong Quantized anomalous Hall effect in magnetic topological insulators , 2010 .

[80]  Bertrand I. Halperin,et al.  Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field , 1987 .