Reversible Triple‐Shape Effect of Polymer Networks Containing Polypentadecalactone‐ and Poly(ε‐caprolactone)‐Segments

[1]  Andreas Lendlein,et al.  Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. , 2007, Biomacromolecules.

[2]  A. Lendlein,et al.  Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. , 2007, Soft matter.

[3]  P. Mather,et al.  Two-way reversible shape memory in a semicrystalline network , 2008 .

[4]  A. Lendlein,et al.  Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. , 2009, Biomacromolecules.

[5]  A. Charlesby,et al.  CHAPTER 13 – POLYETHYLENE , 1960 .

[6]  Yang-Tse Cheng,et al.  Revealing triple-shape memory effect by polymer bilayers. , 2009, Macromolecular rapid communications.

[7]  Richard Vaia,et al.  Adaptive Composites , 2008, Science.

[8]  M. Gazzano,et al.  Crystal structure of poly(ω‐pentadecalactone) , 2003 .

[9]  R. Langer,et al.  Polymeric triple-shape materials , 2006, Proceedings of the National Academy of Sciences.

[10]  Andreas Lendlein,et al.  Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. , 2005, Angewandte Chemie.

[11]  C. Ohm,et al.  A Continuous Flow Synthesis of Micrometer‐Sized Actuators from Liquid Crystalline Elastomers , 2009, Advanced materials.

[12]  G. Strobl Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme , 2006 .

[13]  D. Mantovani,et al.  Shape Memory Materials for Biomedical Applications , 2002 .

[14]  Yue Zhao,et al.  Crystallization under Strain and Resultant Orientation of Poly(ε-caprolactone) in Miscible Blends , 1999 .

[15]  Marc Behl,et al.  Actively moving polymers. , 2006, Soft matter.

[16]  P. Mather,et al.  Shape memory effect exhibited by smectic-C liquid crystalline elastomers. , 2003, Journal of the American Chemical Society.

[17]  Alicia M. Ortega,et al.  Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks , 2008, Advanced functional materials.

[18]  S. Kelch,et al.  Synthesis, Shape‐Memory Functionality and Hydrolytical Degradation Studies on Polymer Networks from Poly(rac‐lactide)‐b‐poly(propylene oxide)‐b‐poly(rac‐lactide) dimethacrylates , 2006 .

[19]  B. Amsden Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. , 2007, Soft matter.

[20]  R. Marchessault,et al.  Crystal structure of poly-ε-caprolactone , 1970 .

[21]  Patrick T. Mather,et al.  Polycaprolactone−POSS Chemical/Physical Double Networks , 2008 .

[22]  Patrick T. Mather,et al.  Combined One-Way and Two-Way Shape Memory in a Glass-Forming Nematic Network , 2009 .

[23]  Marc Behl,et al.  One‐Step Process for Creating Triple‐Shape Capability of AB Polymer Networks , 2009 .

[24]  A. Keller,et al.  The Crystallization of Ultralong Normal Paraffins: The Onset of Chain Folding , 1985, Science.

[25]  A. Lendlein,et al.  Amorphous phase-segregated copoly(ether)esterurethane thermoset networks with oligo(propylene glycol) and oligo[(rac-lactide)-co-glycolide] segments: synthesis and characterization , 2009, Journal of materials science. Materials in medicine.