Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition

Atomic layer deposition (ALD) of Al2O3 using trimethylaluminum (TMA) and water on Pd nanoparticles (NPs) was studied by combining in situ quartz crystal microbalance (QCM) measurements, in situ quadrupole mass spectrometry (QMS), and transmission electron microscopy (TEM) with density functional theory (DFT) calculations. TEM images of the ALD Al2O3 overcoated Pd showed conformal Al2O3 films on the Pd NPs as expected for ALD. However, hydrogen detected by in situ QMS during the water pulses suggested that the ALD Al2O3 films on the Pd NPs were porous rather than being continuous coatings. Additional in situ QCM and QMS measurements indicated that Al2O3 ALD on Pd NPs proceeds by a self-poisoning, self- cleaning process. To evaluate this possibility, DFT calculations were performed on Pd(111) and Pd(211) as idealized Pd NP surfaces. These calculations determined that the TMA and water reactions are thermodynamically favored on the stepped Pd(211) surface, consistent with previous observations. Furthermore, the DFT studies identified methylaluminum (AlCH3*, where the asterisk designates a surface species) as the most stable intermediate on Pd surfaces following the TMA exposures, and that AlCH3* transforms into Al(OH)3* species during the subsequent water pulse. The gas phase products observed using in situ QMS support this TMA dissociation/hydration mechanism. Taken together, the DFT and experimental results suggest a process in which the Pd surface becomes poisoned by adsorbed CH3* species during the TMA exposures that prevent the formation of a complete monolayer of adsorbed Al species. During the subsequent H2O exposures, the Pd surface is cleaned of CH3* species, and the net result is a porous Al2O3 film. This porous structure can retain the catalytic activity of the Pd NPs by providing reagent gases with access to the Pd surface sites, suggesting a promising route to stabilize active Pd catalysts.

[1]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[2]  J. Elam Coatings on High Aspect Ratio Structures , 2012 .

[3]  Mato Knez,et al.  Atomic layer deposition of nanostructured materials , 2012 .

[4]  J. Falconer,et al.  Stabilization of Supported Metal Nanoparticles Using an Ultrathin Porous Shell , 2011 .

[5]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[6]  Yi Cui,et al.  Improved solid oxide fuel cell performance with nanostructured electrolytes. , 2011, ACS nano.

[7]  J. Elam,et al.  Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition , 2011 .

[8]  L. Marks,et al.  Propane Oxidation over Pt/SrTiO3 Nanocuboids , 2011 .

[9]  V. Bright,et al.  ALD tungsten NEMS switches and tunneling devices , 2011 .

[10]  J. Elam,et al.  Indium Oxide Atomic Layer Deposition Facilitated by the Synergy between Oxygen and Water , 2011 .

[11]  Yanfa Yan,et al.  Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. , 2011, Nano letters.

[12]  J. Elam,et al.  Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity , 2011 .

[13]  J. Elam,et al.  Supported ru-pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. , 2010, Nano letters.

[14]  Junling Lu,et al.  Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: growth and morphology. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Elam,et al.  Palladium Catalysts Synthesized by Atomic Layer Deposition for Methanol Decomposition , 2010 .

[16]  J. W. Elam,et al.  Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects , 2010, Science.

[17]  Junling Lu,et al.  Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. , 2010, Angewandte Chemie.

[18]  J. Elam,et al.  Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths , 2010 .

[19]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[20]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[21]  M. Seipenbusch,et al.  Structural Stabilization of Metal Nanoparticles by Chemical Vapor Deposition-Applied Silica Coatings , 2009 .

[22]  J. Elam,et al.  Atomic layer deposition of Cu2S for future application in photovoltaics , 2009 .

[23]  M. Hersam,et al.  Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. , 2009, Small.

[24]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[25]  Arnold J. Forman,et al.  Highly active and sinter-resistant Pd-nanoparticle catalysts encapsulated in silica. , 2008, Small.

[26]  J. Elam,et al.  Conformal ZnO coatings on high surface area silica gel using atomic layer deposition , 2008 .

[27]  S. Bent,et al.  Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. , 2008, Nano letters.

[28]  Suree Brown,et al.  Surface Modification of Au/TiO2 Catalysts by SiO2 via Atomic Layer Deposition , 2008 .

[29]  S. George,et al.  Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  Alyson V. Whitney,et al.  Toward a thermally robust operando surface-enhanced raman spectroscopy substrate , 2007 .

[31]  E. Tanabe,et al.  Improvement in the durability of Pt electrocatalysts by coverage with silica layers , 2007 .

[32]  S. George,et al.  Analysis of Al2O3 Atomic Layer Deposition on ZrO2 Nanoparticles in a Rotary Reactor , 2007 .

[33]  S. George,et al.  Molecular Layer Deposition of Nylon 66 Films Examined Using in Situ FTIR Spectroscopy , 2007 .

[34]  R. Finke,et al.  Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers , 2007 .

[35]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[36]  J. Elam,et al.  Atomic layer deposition of palladium films on Al2O3 surfaces , 2006 .

[37]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[38]  T. Baumann,et al.  Atomic layer deposition for the conformal coating of nanoporous materials , 2005 .

[39]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[40]  G. Somorjai,et al.  Methane dissociative adsorption on the Pt(111) surface over the 300-500 K temperature and 1-10 Torr pressure ranges. , 2005, The journal of physical chemistry. B.

[41]  C. Papp,et al.  Activated adsorption of methane on Pt(1 1 1) —an in situ XPS study , 2005 .

[42]  Orla M. Wilson,et al.  Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. , 2005, Journal of the American Chemical Society.

[43]  Wilfried Vandervorst,et al.  Island growth as a growth mode in atomic layer deposition: A phenomenological model , 2004 .

[44]  J. Schoonman,et al.  Inorganic Nanocomposites of n‐ and p‐Type Semiconductors: A New Type of Three‐Dimensional Solar Cell , 2004 .

[45]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[46]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[47]  Steven M. George,et al.  Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices , 2003 .

[48]  Zhipan Liu,et al.  General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. , 2003, Journal of the American Chemical Society.

[49]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[50]  M. Ritala,et al.  In Situ Quartz Crystal Microbalance and Quadrupole Mass Spectrometry Studies of Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum and Water , 2001 .

[51]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[52]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[53]  M. Leskelä,et al.  In Situ Mass Spectrometry Study on Surface Reactions in Atomic Layer Deposition of Al2O3 Thin Films from Trimethylaluminum and Water , 2000 .

[54]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[55]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[56]  P. Sautet,et al.  VIBRATIONAL FREQUENCY AND CHEMISORPTION SITE : A DFT-PERIODIC STUDY OF NO ON PD (111) AND RH (111) SURFACES , 1998 .

[57]  P. Sautet,et al.  CHEMISORPTION AND TRANSFORMATION OF CHX FRAGMENTS (X = 0-3) ON A PD(111) SURFACE : A PERIODIC DENSITY FUNCTIONAL STUDY , 1998 .

[58]  Mikko Ritala,et al.  Advanced ALE processes of amorphous and polycrystalline films , 1997 .

[59]  Steven M. George,et al.  Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry , 1997 .

[60]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[61]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[62]  Steven M. George,et al.  Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence , 1995 .

[63]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[64]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[65]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[66]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[67]  P. Stair,et al.  Carbon-carbon coupling of methyl groups on Pt(111) , 1993 .

[68]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[69]  N. Kruse,et al.  Methanol decomposition on Pd(111) single crystal surfaces , 1990 .

[70]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[71]  Robert J. Levis,et al.  Thermal decomposition of methanol absorbed on palladium{111}. A new reaction pathway involving methyl formation , 1989 .

[72]  Tuomo Suntola,et al.  Atomic Layer Epitaxy , 1989 .

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[74]  C. Kittel Introduction to solid state physics , 1954 .