Feature Flow Fields

Feature tracking algorithms for instationary vector fields are usually based on a correspondence analysis of the features at different time steps. This paper introduces a method for feature tracking which is based on the integration of stream lines of a certain vector field called feature flow field. We analyze for which features the method of feature flow fields can be applied, we show how events in the flow can be detected using feature flow fields, and we show how to construct the feature flow fields for particular classes of features. Finally, we apply the technique to track critical points in a 2D instationary vector field.

[1]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[2]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[3]  F. H. Post,et al.  Visualization of Time-Dependent Data using Feature Tracking , 1999 .

[4]  Helwig Hauser,et al.  THOROUGH INSIGHTS BY ENHANCED VISUALIZATION OF FLOW TOPOLOGY , 2000 .

[5]  Robert S. Laramee,et al.  Feature Extraction and Visualisation of Flow Fields , 2002, Eurographics.

[6]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[7]  Hans J. W. Spoelder,et al.  Attribute-Based Feature Tracking , 1999 .

[8]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[9]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[10]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[11]  Han-Wei Shen Isosurface extraction in time-varying fields using a temporal hierarchical index tree , 1998 .

[12]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[13]  Charles D. Hansen,et al.  Isosurfacing in span space with utmost efficiency (ISSUE) , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[14]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[15]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[16]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[17]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[18]  Xin Wang,et al.  Tracking and Visualizing Turbulent , 1997 .

[19]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[20]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[21]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[22]  Hans J. W. Spoelder,et al.  Attribute-Based Feature Tracking , 1999, VisSym.

[23]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[24]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[25]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[26]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[27]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[28]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[29]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[30]  Alexander A. Sawchuk,et al.  A region matching motion estimation algorithm , 1991, CVGIP Image Underst..

[31]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[32]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[33]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, VVS '98.

[34]  Alain Vincent,et al.  An algorithm for space recognition and time tracking of vorticity tubes in turbulence , 1992, CVGIP Image Underst..

[35]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[36]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998 .