Demonstration of minisuperspace quantum cosmology using quantum computational algorithms on IBM quantum computer

Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. Quantum computational algorithms have the potential to be an exciting new way of studying quantum cosmology. In quantum cosmology, we learn about the dynamics of the universe without constructing a complete theory of quantum gravity. Since the universal wavefunction exists in an infinite-dimensional superspace over all possible 3D metrics and modes of matter configurations, we take minisuperspaces for our work by constraining the degrees of freedom to particular 3D metrics and uniform scalar field configurations. Here, we consider a wide variety of cosmological models. We begin by analyzing an anisotropic universe with cosmological constant and classical radiation. We then study the results for higher derivatives, Kaluza-Klein theories and string dilaton in quantum cosmology. We use IBM's Quantum Information Science Kit (QISKit) python library and the Variational Quantum Eigensolver (VQE) algorithm for studying these systems. The VQE algorithm is a hybrid algorithm that uses the variational approach and interleaves quantum and classical computations in order to find the minimum eigenvalue of the Hamiltonian for a given system.

[1]  A. A. Zhukov,et al.  Algorithmic simulation of far-from-equilibrium dynamics using quantum computer , 2018, Quantum Information Processing.

[2]  Diego Garc'ia-Mart'in,et al.  Five Experimental Tests on the 5-Qubit IBM Quantum Computer , 2017, 1712.05642.

[3]  Bikash K. Behera,et al.  Experimental realization of quantum teleportation using coined quantum walks , 2019, Quantum Information Processing.

[4]  Bikash K. Behera,et al.  Experimental realization of quantum cheque using a five-qubit quantum computer , 2017, Quantum Information Processing.

[5]  J. Halliwell INTRODUCTORY LECTURES ON QUANTUM COSMOLOGY , 1991 .

[6]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[7]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[8]  T. P. Shestakova Is the Wheeler–DeWitt equation more fundamental than the Schrödinger equation? , 2017, 1801.01351.

[9]  Bikash K. Behera,et al.  A simulational model for witnessing quantum effects of gravity using IBM quantum computer , 2018, Quantum Information Processing.

[10]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[11]  Bikash K. Behera,et al.  Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state , 2020, Quantum Information Processing.

[12]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[13]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[14]  Bikash K. Behera,et al.  Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer , 2017, Quantum Inf. Process..

[15]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[16]  Rolando D. Somma,et al.  Quantum simulations of one dimensional quantum systems , 2015, Quantum Inf. Comput..

[17]  Bikash K. Behera,et al.  Automated error correction in IBM quantum computer and explicit generalization , 2017, Quantum Inf. Process..

[18]  Bikash K. Behera,et al.  Quantum robots can fly; play games: an IBM quantum experience , 2019, Quantum Inf. Process..

[19]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[20]  F. Nori,et al.  Non-equilibrium Landauer Transport Model for Hawking radiation from a Black Hole , 2010 .

[21]  James B. Hartle,et al.  Wave Function of the Universe , 1983 .

[22]  A. Wallraff,et al.  Observation of topological Uhlmann phases with superconducting qubits , 2016, 1607.08778.

[23]  S. Capozziello,et al.  Minisuperspace and Wheeler-DeWitt equation for string dilaton cosmology , 1993 .

[24]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[25]  Z. Gedik,et al.  Optimization and experimental realization of the quantum permutation algorithm , 2017, 1708.07900.

[26]  Amsterdamski Wave function of an anisotropic universe. , 1985, Physical review. D, Particles and fields.

[27]  Bikash K. Behera,et al.  Designing quantum router in IBM quantum computer , 2018, Quantum Information Processing.

[28]  A. A. Zhukov,et al.  Nondestructive classification of quantum states using an algorithmic quantum computer , 2019, Quantum Mach. Intell..

[29]  Nimish Mishra,et al.  Automation of quantum Braitenberg vehicles using finite automata: Moore machines , 2019, Quantum Information Processing.

[30]  B. K. Behera,et al.  Demonstration of a general fault-tolerant quantum error detection code for (2 n + 1)-qubit entangled state on IBM 16-qubit quantum computer , 2018, IET Quantum Commun..

[31]  P. González-Díaz On the wave function of the universe , 1985 .

[32]  A. Vilenkin,et al.  Tunneling wave function of the universe , 2018, Physical Review D.

[33]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[34]  R. Feynman Simulating physics with computers , 1999 .

[35]  Enrique Solano,et al.  Quantum Artificial Life in an IBM Quantum Computer , 2017, Scientific Reports.

[36]  Laflamme,et al.  Quantum cosmology and recollapse. , 1987, Physical review. D, Particles and fields.

[37]  P. Pedram On the conformally coupled scalar field quantum cosmology , 2008, 0811.3668.

[38]  F. Nori,et al.  Experimental test of non-macrorealistic cat states in the cloud , 2019, npj Quantum Information.

[39]  Bikash K. Behera,et al.  Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer , 2017, Quantum Information Processing.

[40]  Bikash K. Behera,et al.  Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer , 2017, Quantum Information Processing.

[41]  S. Hawking,et al.  Higher derivatives in quantum cosmology: (I). The isotropic case , 1984 .

[42]  Bikash K. Behera,et al.  Explicit demonstration of initial state construction in artificial neural networks using NetKet and IBM Q experience platform , 2020, Quantum Inf. Process..