Schnelle tomographische Bildgebungsverfahren für Mehrphasenströmungen

Zusammenfassung Tomographische Bildgebungsverfahren sind heute vor allem aus der Medizin und der zerstörungsfreien Prüfung bekannt. Sie werden aber auch als äußerst vielversprechend für die Analyse komplexer Strömungsvorgänge, etwa in chemischen Apparaten, erachtet. Besonderes Interesse besteht hierbei in der Aufklärung hydrodynamischer Phänomene in Mehrphasenapparaten, wie beispielsweise Blasensäulen, Kolonnen, Festbettreaktoren und Wirbelschichten, in denen die Hydrodynamik die Stoff- und Wärmetransportvorgänge sowie das makroskopische Reaktionsgeschehen entscheidend beeinflussen. Allerdings müssen tomographische Messverfahren für solche Anwendungen besonders schnell sein, da sich Strömungsstrukturen in einer räumlichen Skale von Millimetern im Allgemeinen im Millisekundenmaßstab ändern. In der jüngeren Vergangenheit wurden mit der Gittersensormesstechnik und der ultraschnellen Röntgentomographie zwei Messverfahren entwickelt, die diese Anforderungen erfüllen. Ihre Funktionsprinzipien und Anwendungen werden in diesem Artikel beschrieben. Abstract Tomographic methods are well known today from medicine and non-destructive testing. However, they are also considered as promising techniques for the analysis of complex flow phenomena, for instance in chemical reactors. The investigation of hydrodynamic phenomena is of special interest in multiphase reactors such as bubble columns, separation and distillation columns, fixed bed reactors and fluidized beds in which the hydrodynamics decisively determines the heat and mass transfer as well as the global course of chemical reactions. For such applications tomography methods must be very fast because flow structures change within milliseconds in the millimeter range. With the wire-mesh sensor technology and ultrafast X-ray tomography two new imaging methods have been developed in the recent past, which fulfil these requirements. Here their functional principles and applications are described.

[1]  Uwe Hampel,et al.  Ultra fast electron beam X-ray computed tomography for two-phase flow measurement , 2010 .

[2]  Uwe Hampel,et al.  Experimental ultra fast X-ray computed tomography with a linearly scanned electron beam source , 2005 .

[3]  W. B. Gilboy,et al.  Development of a high speed X-ray tomography system for multiphase flow imaging , 1998 .

[4]  Milorad P. Dudukovic,et al.  A Lagrangian description of flows in stirred tanks via computer-automated radioactive particle tracking (CARPT) , 2001 .

[5]  Xianfeng Fan,et al.  Positron imaging techniques for process engineering: recent developments at Birmingham , 2008 .

[6]  Trevor A. York Status of electrical tomography in industrial applications , 2001, J. Electronic Imaging.

[7]  Barry J. Azzopardi,et al.  High-resolution gas–oil two-phase flow visualization with a capacitance wire-mesh sensor , 2010 .

[8]  H. Prasser,et al.  A new electrode-mesh tomograph for gas–liquid flows , 1998 .

[9]  Uwe Hampel,et al.  Ultrafast cross‐sectional imaging of gas‐particle flow in a fluidized bed , 2009 .

[10]  D. Mewes,et al.  Tomographic Measurement Techniques – Visualization of Multiphase Flows , 1998 .

[11]  Uwe Hampel,et al.  Ultrafast limited-angle-type x-ray tomography , 2007 .

[12]  Uwe Hampel,et al.  Flow imaging by high speed transmission tomography. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[13]  Apostolos Kantzas,et al.  Computation of holdups in fluidized and trickle beds by computer-assisted tomography , 1994 .

[14]  Uwe Hampel,et al.  Dual-plane ultrafast limited-angle electron beam x-ray tomography , 2010 .

[15]  F. Zimmermann,et al.  High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. , 2007, The Review of scientific instruments.

[16]  Wuqiang Yang,et al.  Design of electrical capacitance tomography sensors , 2010 .

[17]  U. Hampel,et al.  Capacitance wire-mesh sensor for fast measurement of phase fraction distributions , 2007 .

[18]  Milorad P. Dudukovic,et al.  Gas holdup in bubble columns at elevated pressure via computed tomography , 2001 .

[19]  Milorad P. Dudukovic,et al.  Opaque multiphase flows: experiments and modeling , 2002 .

[20]  Timothy J. O'Hern,et al.  Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns , 1995 .

[21]  B. T. Hjertaker,et al.  A dual sensor flow imaging tomographic system , 1996 .

[22]  Keiichi Hori,et al.  Development of ultra-fast X-ray computed tomography scanner system , 1997 .

[23]  Makoto Akai,et al.  Ultra-fast x-ray tomography for multi-phase flow interface dynamic studies , 2003 .

[24]  Uwe Hampel,et al.  Ultrafast three-dimensional x-ray computed tomography , 2011 .

[25]  Lynn F. Gladden,et al.  Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows , 2003 .

[26]  Sailesh Kumar,et al.  A γ-ray tomographic scanner for imaging voidage distribution in two-phase flow systems , 1995 .

[27]  F. A. Kulacki,et al.  Design of an Isotopic CT Scanner for Two Phase Flow Measurements , 1980, IEEE Transactions on Nuclear Science.

[28]  U. Hampel,et al.  An ultra fast electron beam x-ray tomography scanner , 2008 .