Modeling documents with Generative Adversarial Networks

This paper describes a method for using Generative Adversarial Networks to learn distributed representations of natural language documents. We propose a model that is based on the recently proposed Energy-Based GAN, but instead uses a Denoising Autoencoder as the discriminator network. Document representations are extracted from the hidden layer of the discriminator and evaluated both quantitatively and qualitatively.

[1]  Geoffrey E. Hinton,et al.  Replicated Softmax: an Undirected Topic Model , 2009, NIPS.

[2]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[3]  VincentPascal,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010 .

[4]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[5]  Hugo Larochelle,et al.  A Neural Autoregressive Topic Model , 2012, NIPS.

[6]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[7]  Phil Blunsom,et al.  Neural Variational Inference for Text Processing , 2015, ICML.

[8]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[11]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[12]  Yoshua Bengio,et al.  Generative Adversarial Networks , 2014, ArXiv.

[13]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[14]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[15]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[16]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[17]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[18]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[19]  Hugo Larochelle,et al.  Document Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[20]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[21]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[22]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[23]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.