High Temperature Oxidation Behavior of Alloy 617 and Haynes 230 in Impurity-Controlled Helium Environments

[1]  C. Jang,et al.  Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys , 2011 .

[2]  C. Jang,et al.  Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230 , 2010 .

[3]  L. Nyborg,et al.  Surface composition of the steel powders pre-alloyed with manganese , 2010 .

[4]  Céline Cabet,et al.  Corrosion of high temperature metallic materials in VHTR , 2009 .

[5]  W. Ryu,et al.  Oxidation Characteristics and Oxide Layer Evolution of Alloy 617 and Haynes 230 at 900 °C and 1100 °C , 2009 .

[6]  Weiju Ren,et al.  Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials , 2008 .

[7]  C. Jang,et al.  Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments , 2008 .

[8]  Krzysztof Wolski,et al.  High temperature reactivity of two chromium-containing alloys in impure helium , 2008 .

[9]  M. Pijolat,et al.  Oxide-Layer Formation and Stability on a Nickel-Base Alloy in Impure Helium at High Temperature , 2007 .

[10]  S. Sridhar,et al.  Grain boundary ridge formation during initial high temperature oxidation of Mn/Al TRIP steel , 2007 .

[11]  B. Pieraggi,et al.  Morphological characteristics of oxide scales grown on H11 steel oxidised in dry or wet air , 2005 .

[12]  W. Quadakkers,et al.  Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure , 2003 .

[13]  Zhang Baolin,et al.  Morphologies and growth mechanisms of aluminum nitride whiskers by SHS method—Part 2 , 2000 .

[14]  X. G. Zheng,et al.  High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres , 1994 .

[15]  P. Caceres,et al.  Morphology and crystallography of aluminum nitride whiskers , 1994 .

[16]  H. Schmidt,et al.  Diffusion of cations in chromia layers grown on iron-base alloys , 1992 .

[17]  L. W. Graham Corrosion of metallic materials in HTR-helium environments , 1990 .

[18]  B. Huchtemann The effect of alloy chemistry on creep behaviour in a helium environment with low oxygen partial pressure , 1989 .

[19]  H. Christ,et al.  Mechanisms of high-temperature corrosion in helium containing small amounts of impurities. II. Corrosion of the nickel-base alloy inconel 617 , 1988 .

[20]  W. J. Quadakkers High temperature corrosion in the service environments of a nuclear process heat plant , 1987 .

[21]  Willem J. Quadakkers,et al.  Corrosion of high temprature alloys in the primary circuit helium of high temperature gas cooled reactors. – Part I: Theoretical background , 1985 .

[22]  H. Araki,et al.  Creep Rupture Properties of Nickel-base Heat Resisting Alloys in Two Impure Helium Environments of HTGR , 1985 .

[23]  R. Rapp,et al.  In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals , 1984 .

[24]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[25]  T. Hirano,et al.  Carburization and decarburization of superalloys in the simulated htgr helium , 1981 .

[26]  H. Grabke,et al.  Kinetics of the water-gas shift reaction on an “FeO” surface , 1979 .

[27]  R. Wild High temperature oxidation of austenitic stainless steel in low oxygen pressure , 1977 .

[28]  F. Frank Capillary equilibria of dislocated crystals , 1951 .