New eigenvalue estimates involving Bessel functions

Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.

[1]  Nicolas Ginoux,et al.  The Dirac Spectrum , 2009 .

[2]  J. Bourguignon,et al.  A Spinorial Approach to Riemannian and Conformal Geometry , 2015 .

[3]  V. G. Sigillito,et al.  Inequalities for membrane and Stekloff eigenvalues , 1968 .

[4]  Beweis , 2019 .

[5]  QU C.K. “BEST POSSIBLE” UPPER AND LOWER BOUNDS FOR THE ZEROS OF THE BESSEL FUNCTION Jν(x) , 1999 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  José F. Escobar,et al.  The Yamabe problem on manifolds with boundary , 1992 .

[8]  Hermann Karcher,et al.  A general comparison theorem with applications to volume estimates for submanifolds , 1978 .

[9]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[10]  A. Savo A mean-value lemma and applications , 2001 .

[11]  Catherine Bandle,et al.  On the Stability of Solutions of Semilinear Elliptic Equations with Robin Boundary Conditions on Riemannian Manifolds , 2015, SIAM J. Math. Anal..

[12]  Pedro R. S. Antunes,et al.  Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian , 2012, 1204.0648.

[13]  S. Yau,et al.  Estimates of eigenvalues of a compact Riemannian manifold , 1980 .

[14]  A. Savo,et al.  On the first eigenvalue of the Dirichlet-to-Neumann operator on forms , 2011, 1105.2711.

[15]  H. P. McKean,et al.  An upper bound to the spectrum of $\Delta $ on a manifold of negative curvature , 1970 .

[16]  C. Anné Principe de Dirichlet pour les formes différentielles , 1988 .

[17]  A. Savo,et al.  Eigenvalue and gap estimates for the Laplacian acting on p-forms , 2003 .

[18]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[19]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[20]  A. Roldán,et al.  Eigenvalue Boundary Problems for the Dirac Operator , 2002 .

[21]  A. Kasue Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary , 1983 .

[22]  L. J. Landau Ratios of Bessel Functions and Roots of αJν(x) + xJ′ν(x) = 0 , 1999 .

[23]  J. Figueroa-O’Farrill,et al.  Spin geometry , 2019, Graduate Studies in Mathematics.

[24]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[25]  F. B. Introduction to Bessel Functions , 1939, Nature.

[26]  The Hijazi inequality on manifolds with boundary , 2006, math/0603510.

[27]  L. Payne Some Isoperimetric Inequalities for Harmonic Functions , 1970 .

[28]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[29]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[30]  Thierry Aubin The Ricci Curvature , 1998 .

[31]  A. Savo,et al.  Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem , 2012, 1206.7102.

[32]  T. Friedrich Dirac Operators in Riemannian Geometry , 2000 .

[33]  Antonio Ros Mulero Compact hypersurfaces with constant higher order mean curvatures. , 1987 .

[34]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .

[35]  Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds , 2019, 1904.07525.

[36]  T. Friedrich Der erste Eigenwert des Dirac‐Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung , 1980 .

[37]  Xiao Zhang,et al.  Eigenvalues of the Dirac Operator on Manifolds¶with Boundary , 2000, math/0012261.

[38]  Oussama Hijazi,et al.  A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors , 1986 .

[39]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[40]  Bounds and extremal domains for Robin eigenvalues with negative boundary parameter , 2016, 1605.08161.

[41]  Roderick Wong,et al.  “Best possible” upper and lower bounds for the zeros of the Bessel function _{}() , 1999 .