Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification.

There is great demand for flexible biomolecule analysis platforms that can precisely quantify very low levels of multiple targets directly in complex biological samples. Herein we demonstrate multiplexed quantification of microRNAs (miRNAs) on encoded hydrogel microparticles with subfemtomolar sensitivity and single-molecule reporting resolution. Rolling circle amplification (RCA) of a universal adapter sequence that is ligated to all miRNA targets captured on gel-embedded probes provides the ability to label each target with multiple fluorescent reporters and eliminates the possibility of amplification bias. The high degree of sensitivity achieved by the RCA scheme and the resistance to fouling afforded by the use of gel particles are leveraged to directly detect miRNA in small quantities of unprocessed human serum samples without the need for RNA extraction or target-amplification steps. This versatility has powerful implications for the development of rapid, noninvasive diagnostic assays.

[1]  Daniel B. Martin,et al.  Circulating microRNAs as stable blood-based markers for cancer detection , 2008, Proceedings of the National Academy of Sciences.

[2]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[3]  V. Chechetkin,et al.  Kinetics of Hybridization on Surface Oligonucleotide Microchips: Theory, Experiment, and Comparison with Hybridization on Gel-Based Microchips , 2006, Journal of biomolecular structure & dynamics.

[4]  Dhananjay Dendukuri,et al.  Stop-flow lithography in a microfluidic device. , 2007, Lab on a chip.

[5]  Hailing Jin,et al.  Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA. , 2009, Analytical chemistry.

[6]  P. Doyle,et al.  Optimization of encoded hydrogel particles for nucleic acid quantification. , 2009, Analytical chemistry.

[7]  Monya Baker,et al.  MicroRNA profiling: separating signal from noise , 2010, Nature Methods.

[8]  Henrik H. J. Persson,et al.  DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets , 2009, Nature.

[9]  C Garmendia,et al.  Highly efficient DNA synthesis by the phage phi 29 DNA polymerase , 1989 .

[10]  Sandra B. Munro,et al.  Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray , 2009, PloS one.

[11]  Bing Li,et al.  An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. , 2010, Small.

[12]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[13]  Mats Nilsson,et al.  Digital quantification using amplified single-molecule detection , 2006, Nature Methods.

[14]  T. Golub,et al.  A method for high-throughput gene expression signature analysis , 2006, Genome Biology.

[15]  Jeffrey G. Reid,et al.  Expression profiling of microRNAs by deep sequencing , 2009, Briefings Bioinform..

[16]  A. Mirzabekov,et al.  Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. , 1998, Nucleic acids research.

[17]  Hywel Morgan,et al.  Microparticle encoding technologies for high-throughput multiplexed suspension assays , 2009, Integrative biology : quantitative biosciences from nano to macro.

[18]  R. Ach,et al.  Direct and sensitive miRNA profiling from low-input total RNA. , 2006, RNA.

[19]  O. Urakawa,et al.  Small - , 2007 .

[20]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Schopf,et al.  Attomole DNA detection assay via rolling circle amplification and single molecule detection. , 2010, Analytical biochemistry.

[22]  Jeffrey Shelton,et al.  An optimized isolation and labeling platform for accurate microRNA expression profiling. , 2005, RNA.

[23]  Patrick S Doyle,et al.  Rapid microRNA profiling on encoded gel microparticles. , 2011, Angewandte Chemie.

[24]  S. Luo,et al.  Highly sensitive and specific microRNA expression profiling using BeadArray technology , 2008, Nucleic acids research.

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[26]  Varshal K. Davé,et al.  Signal amplification by rolling circle amplification on DNA microarrays. , 2001, Nucleic acids research.

[27]  Jørgen Kjems,et al.  A microRNA detection system based on padlock probes and rolling circle amplification. , 2006, RNA.

[28]  A. Horgan,et al.  Physicochemical perspectives on DNA microarray and biosensor technologies. , 2005, Trends in biotechnology.

[29]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  David H Wilson,et al.  Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. , 2011, Analytical chemistry.

[32]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[33]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[34]  M. Wener,et al.  The effect of high salt concentration on detection of serum immune complexes and autoantibodies to C1q in patients with systemic lupus erythematosus. , 2002, The Journal of rheumatology.

[35]  Shiping Fang,et al.  Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. , 2006, Journal of the American Chemical Society.

[36]  A. Fire,et al.  Rolling replication of short DNA circles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. Lizardi,et al.  Mutation detection and single-molecule counting using isothermal rolling-circle amplification , 1998, Nature Genetics.

[38]  Jianzhong Xi,et al.  Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification. , 2009, RNA.

[39]  Chunhai Fan,et al.  A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection , 2010, Nucleic acids research.

[40]  E. Kroh,et al.  Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma , 2011, Proceedings of the National Academy of Sciences.

[41]  Patrick S Doyle,et al.  Multiplexed protein quantification with barcoded hydrogel microparticles. , 2010, Analytical chemistry.

[42]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[43]  Holger Sültmann,et al.  Serum microRNAs as non-invasive biomarkers for cancer , 2010, Molecular Cancer.

[44]  M. Ali,et al.  Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. , 2008, Angewandte Chemie.

[45]  Dongyu Liu,et al.  Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. , 1996, Journal of the American Chemical Society.