Dynamic performance of dissipative dielectric elastomers under alternating mechanical load

This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.

[1]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[2]  Choon Chiang Foo,et al.  Model of dissipative dielectric elastomers , 2012 .

[3]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[4]  Eric Mockensturm,et al.  Dynamic response of dielectric elastomers , 2006 .

[5]  Edoardo Mazza,et al.  Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators , 2007 .

[6]  S. Michel,et al.  A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators , 2009 .

[7]  Edoardo Mazza,et al.  Electromechanical coupling in dielectric elastomer actuators , 2007 .

[8]  Marcus Rosenthal,et al.  Design of commercial applications of EPAM technology , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  S. Bauer,et al.  Self-organized minimum-energy structures for dielectric elastomer actuators , 2006 .

[10]  Zhigang Suo,et al.  Performance of dissipative dielectric elastomer generators , 2012 .

[11]  N. C. Goulbourne,et al.  Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes , 2009 .

[12]  Mary C. Boyce,et al.  Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading , 2010 .

[13]  W. Hong,et al.  Modeling Viscoelastic Dielectrics , 2011 .

[14]  Force relaxation in charged dielectric elastomer actuators , 2010, 2010 10th IEEE International Conference on Solid Dielectrics.

[15]  Stefan Seelecke,et al.  Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electro-active polymer actuators , 2010 .

[16]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[17]  A. R. Blythe,et al.  Electrical properties of polymers , 1979 .

[18]  G. Raju Dielectrics in electric fields , 2003 .

[19]  Youhe Zhou,et al.  Dynamics of a thick-walled dielectric elastomer spherical shell , 2011 .

[20]  S. Michel,et al.  Stacked dielectric elastomer actuator for tensile force transmission , 2009 .

[21]  Iain A. Anderson,et al.  Self-priming dielectric elastomer generators , 2010 .

[22]  Zhigang Suo,et al.  Nonlinear oscillation of a dielectric elastomer balloon , 2010 .

[23]  Junhua Qiang,et al.  A dynamic visco-hyperelastic model of dielectric elastomers and their energy dissipation characteristics , 2013 .

[24]  M. Dadras,et al.  Voltage Control of the Resonance Frequency of Dielectric Electroactive Polymer (DEAP) Membranes , 2008, Journal of Microelectromechanical Systems.

[25]  Z. Suo Theory of dielectric elastomers , 2010 .

[26]  Lien-Wen Chen,et al.  Refractive and focusing behaviours of tunable sonic crystals with dielectric elastomer cylindrical actuators , 2008 .

[27]  Dario Albino Carnelli,et al.  Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields , 2012 .

[28]  Bo Li,et al.  Electromechanical stability in charge-controlled dielectric elastomer actuation , 2011 .

[29]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[30]  B. Steinberger,et al.  Electrically actuated elastomers for electro–optical modulators , 2006 .

[31]  Iain A. Anderson,et al.  Leakage current as a predictor of failure in dielectric elastomer actuators , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[32]  Siegfried Bauer,et al.  Capacitive extensometry for transient strain analysis of dielectric elastomer actuators , 2008 .

[33]  Shaoxing Qu,et al.  Electromechanical and dynamic analyses of tunable dielectric elastomer resonator , 2012 .

[34]  R. Lerch,et al.  Dynamic performance of dielectric elastomers utilized as acoustic actuators , 2012, Applied Physics A.

[35]  Zhigang Suo,et al.  Method for measuring energy generation and efficiency of dielectric elastomer generators , 2011 .

[36]  Jinxiong Zhou,et al.  Effect of viscoelastic relaxation on the electromechanical coupling of dielectric elastomer , 2013, Smart Structures.

[37]  Jinxiong Zhou,et al.  Modeling of the muscle-like actuation in soft dielectrics: deformation mode and electromechanical stability , 2013 .