The complexity of small universal Turing machines: A survey

We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example, it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of Turing machines. These are some of the most intuitively simple computational devices and previously the best known simulations were exponentially slow. We discuss recent work that shows that these machines are indeed efficient simulators. As a related result, we also find that Rule 110, a well-known elementary cellular automaton, is also efficiently universal. We also review a large number of old and new universal program size results, including new small universal Turing machines and new weakly, and semi-weakly, universal Turing machines. We then discuss some ideas for future work arising out of these, and other, results.

[1]  Marvin Minsky,et al.  Universality of (p=2) Tag Systems and a 4 Symbol 7 State Universal Turing Machine , 1962 .

[2]  Maurice Margenstern,et al.  On the Optimal Number of Instructions for Universal Turing Machines Connected With a Finite Automaton , 2003, Int. J. Algebra Comput..

[3]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[4]  L. M. Pavlotskaya,et al.  Solvability of the halting problem for certain classes of Turing machines , 1973 .

[5]  Maurice Margenstern,et al.  Non-Erasing Turing Machines: A New Frontier Between a Decidable Halting Problem and Universality , 1995, LATIN.

[6]  Gabor T. Herman,et al.  On the time complexity of 2-tag systems and small universal Turing machines , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[7]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[8]  Turlough Neary,et al.  The Complexity of Small Universal Turing Machines , 2007, CiE.

[9]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[10]  Manfred Kudlek,et al.  A Universal Turing Machine with 3 States and 9 Symbols , 2001, Developments in Language Theory.

[11]  Shen Lin,et al.  Computer Studies of Turing Machine Problems , 1965, JACM.

[12]  Claudio Baiocchi,et al.  Three Small Universal Turing Machines , 2001, MCU.

[13]  S. Krantz Book Review: A new kind of science , 2002 .

[14]  Pascal Michel,et al.  Busy beaver competition and Collatz-like problems , 1993, Arch. Math. Log..

[15]  Paul W. K. Rothemund,et al.  A DNA and restriction enzyme implementation of Turing machines , 1995, DNA Based Computers.

[16]  G. T. Herman,et al.  The Halting Problem of one State Turing Machines with n-Dimensional Tape , 1968 .

[17]  Heiner Marxen,et al.  Attacking the Busy Beaver 5 , 1990, Bull. EATCS.

[18]  Turlough Neary,et al.  A small fast universal Turing machine , 2005 .

[19]  Marvin Minsky,et al.  Size and structure of universal Turing machines using Tag systems , 1962 .

[20]  Pascal Michel,et al.  Small Turing machines and generalized busy beaver competition , 2004, Theor. Comput. Sci..

[21]  Turlough Neary,et al.  Small polynomial time universal Turing machines , 2022 .

[22]  Matthew Cook,et al.  A Concrete View of Rule 110 Computation , 2009, CSP.

[23]  Akihiro Nozaki,et al.  On the notion of universality of Turing machine , 1969, Kybernetika.

[24]  Scott Aaronson,et al.  Book Review: A new kind of science , 2002 .

[25]  Nicolas Ollinger,et al.  Four states are enough! , 2011, Theor. Comput. Sci..

[26]  Joyce Friedman,et al.  A Decision Procedure for Computations of Finite Automata , 1962, JACM.

[27]  Yongsheng Bai,et al.  Proceedings of the 2005 International Conference on Foundations of Computer Science, FCS'05 , 2005, FOCS 2005.

[28]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[29]  Manfred Kudlek,et al.  Small Deterministic Turing Machines , 1996, Theor. Comput. Sci..

[30]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[31]  Patrick C. Fischer,et al.  The Solvability of the Halting Problem for 2-State Post Machines , 1967, JACM.

[32]  Turlough Neary,et al.  Small Weakly Universal Turing Machines , 2007, FCT.

[33]  Lutz Priese,et al.  Towards a Precise Characterization of the Complexity of Universal and Nonuniversal Turing Machines , 1979, SIAM J. Comput..

[34]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[35]  T. Rado On non-computable functions , 1962 .

[36]  Hans Kleine Büning,et al.  Kleine universelle mehrdimensionale Turingmaschinen , 1977, J. Inf. Process. Cybern..

[37]  E. F. Moore A simplified universal Turing machine , 1952, ACM '52.

[38]  Eric Goles Ch.,et al.  Complexity of Langton's ant , 2002, Discret. Appl. Math..

[39]  Milton W. Green A lower bound on Rado's sigma function for binary Turing machines , 1964, SWCT.

[40]  Nicolas Ollinger,et al.  A Particular Universal Cellular Automaton , 2008, CSP.

[41]  Kenichi Morita,et al.  A Universal Reversible Turing Machine , 2007, MCU.

[42]  Liesbeth De Mol,et al.  Study of Limits of Solvability in Tag Systems , 2007, MCU.

[43]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[44]  Hao Wang,et al.  A Variant to Turing's Theory of Computing Machines , 1957, JACM.

[45]  Hava T. Siegelmann,et al.  Nine switch-affine neurons suffice for Turing universality , 1999, Neural Networks.

[46]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[47]  Yurii Rogozhin,et al.  On the Rule Complexity of Universal Tissue P Systems , 2005, Workshop on Membrane Computing.

[48]  Philip K. Hooper Some small, multitape universal Turing machines , 1969, Inf. Sci..

[49]  M. Margenstern,et al.  Deux machines de Turing universelles à au plus deux instructions gauches , 1995 .

[50]  Maurice Margenstern,et al.  Nonerasing Turing Machines: A Frontier Between a Decidable Halting Problem and Universality , 1994, Theor. Comput. Sci..

[51]  Maurice Margenstern,et al.  An algorithm for building intrinsically universal cellular automata in hyperbolic spaces , 2022 .

[52]  Iurie Rogojin,et al.  About Shannon's problem for turing machines , 1993, Comput. Sci. J. Moldova.

[53]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[54]  Nicolas Ollinger,et al.  The Quest for Small Universal Cellular Automata , 2002, ICALP.

[55]  M. Margenstern,et al.  Une machine de Turing universelle non-effaçante à exactement trois instructions gauches , 1995 .

[56]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[57]  Cristopher Moore,et al.  Quasilinear cellular automata , 1997, adap-org/9701001.

[58]  Martin Davis,et al.  The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions , 2004 .

[59]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[60]  Shigeru Watanabe,et al.  5-Symbol 8-State and 5-Symbol 6-State Universal Turing Machines , 1961, JACM.

[61]  Tero Harju,et al.  Splicing Systems for Universal Turing Machines , 2004, DNA.

[62]  Hao Wang Tag systems and lag systems , 1963 .

[63]  Thomas Ottmann,et al.  Eine universelle Turingmaschine mit zweidimensionalem Band, 7 Buchstaben und 2 Zuständen , 1975, J. Inf. Process. Cybern..

[64]  Maurice Margenstern,et al.  On quasi-unilateral universal Turing machines , 2001, Theor. Comput. Sci..

[65]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[66]  Raphael M. Robinson,et al.  MINSKY'S SMALL UNIVERSAL TURING MACHINE , 1991 .

[67]  Liudmila Pavlotskaya,et al.  On Machines, Universal by Extensions , 1996, Theor. Comput. Sci..

[68]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[69]  Klaus W. Wagner,et al.  Universelle Turingmaschinen mit n-dimensionalem Band , 1973, J. Inf. Process. Cybern..

[70]  Maurice Margenstern,et al.  Decidability and Undecidability of the Halting Problem on Turing Machines, a Survey , 1997, LFCS.

[71]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[72]  John Cocke,et al.  Universality of Tag Systems with P = 2 , 1964, JACM.

[73]  Maurice Margenstern,et al.  Surprising Areas in the Quest for Small Universal Devices , 2006, MFCSIT.

[74]  Turlough Neary,et al.  Small fast universal Turing machines , 2006, Theor. Comput. Sci..

[75]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[76]  Arnold L. Rosenberg,et al.  Counter machines and counter languages , 1968, Mathematical systems theory.

[77]  Rich Schroeppel,et al.  A Two Counter Machine Cannot Calculate 2N , 1972 .

[78]  Turlough Neary,et al.  Small Semi-Weakly Universal Turing Machines , 2007, Fundam. Informaticae.

[79]  Maurice Margenstern,et al.  The Laterality Problem for Non-Erasing Turing Machines on {0, 1} is Completely Solved , 1997, RAIRO Theor. Informatics Appl..

[80]  Turlough Neary,et al.  P-completeness of Cellular Automaton Rule 110 , 2006, ICALP.

[81]  Allen H. Brady The busy beaver game and the meaning of life , 1988 .

[82]  Turlough Neary,et al.  Four Small Universal Turing Machines , 2007, Fundam. Informaticae.

[83]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[84]  Maurice Margenstern,et al.  Frontier between decidability and undecidability: a survey , 2000, Theor. Comput. Sci..

[85]  Maurice Margenstern Non Erasing Turing Machines: A Frontier Between a Decidable Halting Problem and Universality , 1993, FCT.

[86]  Claude E. Shannon,et al.  A Universal Turing Machine with Two Internal States , 1956 .

[87]  Cristopher Moore,et al.  Predicting nonlinear cellular automata quickly by decomposing them into linear ones , 1997, patt-sol/9701008.

[88]  Allen H. Brady The determination of the value of Rado’s noncomputable function Σ() for four-state Turing machines , 1983 .

[89]  Patrick C. Fischer On Formalisms for Turing Machines , 1965, JACM.

[90]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[91]  Cristopher Moore,et al.  Quasilinear cellular automata , 1997, adap-org/9701001.