Recurrence relations for the Sheffer sequences
暂无分享,去创建一个
[1] A. Luzon,et al. Recurrence relations for polynomial sequences via Riordan matrices , 2009 .
[2] Renzo Sprugnoli,et al. Riordan arrays and combinatorial sums , 1994, Discret. Math..
[3] Wen-Jin Woan,et al. Generating Functions via Hankel and Stieltjes Matrices , 2000 .
[4] Gian-Carlo Rota,et al. On the foundations of combinatorial theory. VIII. Finite operator calculus , 1973 .
[5] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[6] G. Rota,et al. Finite operator calculus , 1975 .
[7] Renzo Sprugnoli,et al. On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.
[8] Emanuele Munarini,et al. Cayley continuants , 2005, Theor. Comput. Sci..
[9] Francesco A. Costabile,et al. A determinantal approach to Appell polynomials , 2010, J. Comput. Appl. Math..
[10] Mourad E. H. Ismail,et al. A -umbral calculus , 1981 .
[11] Emeric Deutsch,et al. Production Matrices and Riordan Arrays , 2007, math/0702638.
[12] Louis W. Shapiro,et al. Bijections and the Riordan group , 2003, Theor. Comput. Sci..
[13] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..
[14] Luca Ferrari,et al. Production matrices , 2005, Adv. Appl. Math..
[15] Renzo Sprugnoli,et al. Sequence characterization of Riordan arrays , 2009, Discret. Math..
[16] Renzo Sprugnoli,et al. Riordan arrays and the Abel-Gould identity , 1995, Discret. Math..
[17] Tianming Wang,et al. Generalized Riordan arrays , 2008, Discret. Math..
[18] P. Barry. On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays , 2007 .