Feedback vertex set in hypercubes

Abstract Given a graph G=(V,E) , the minimum feedback vertex set V is a subset of vertices of minimum size whose removal induces an acyclic subgraph G′=(V\ V ,E′) . The problem of finding V is NP -hard for general networks but interesting polynomial solutions have been found for particular graph classes. In this paper we find close upper and lower bounds to the size of V in a k -dimensional hypercube.

[1]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[2]  David Peleg,et al.  Size Bounds for Dynamic Monopolies , 1998, Discret. Appl. Math..

[3]  J. Siam A LINEAR TIME ALGORITHM FOR FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS , 1979 .

[4]  Flaminia L. Luccio Almost Exact Minimum Feedback Vertex Set in Meshes and Butterflies , 1998, Inf. Process. Lett..

[5]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[6]  Graeme Smith,et al.  The identification of a minimal feedback vertex set of a directed graph , 1975 .

[7]  Mary Lou Soffa,et al.  On Locating Minimum Feedback Vertex Sets , 1988, J. Comput. Syst. Sci..

[8]  D. Peleg Local Majority Voting, Small Coalitions and Controlling Monopolies in Graphs: A Review , 1996 .

[9]  Chuan Yi Tang,et al.  A Linear-Time Algorithm for the Weighted Feedback Vertex Problem on Interval Graphs , 1997, Inf. Process. Lett..

[10]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[11]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[12]  Mary Lou Soffa,et al.  Feedback vertex sets and cyclically reducible graphs , 1985, JACM.

[13]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[14]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[15]  Maw-Shang Chang,et al.  Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs , 1997, Acta Informatica.

[16]  Y. Daniel Liang On the Feedback Vertex Set Problem in Permutation Graphs , 1994, Inf. Process. Lett..