evidencein the human auditory system: fMRI Sensitivity to temporal modulation rate and spectral

[1]  M. Harms,et al.  Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. , 2002, Journal of neurophysiology.

[2]  Dave R. M. Langers,et al.  fMRI activation in relation to sound intensity and loudness , 2007, NeuroImage.

[3]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[4]  Joshua X. Gittelman,et al.  Rethinking Tuning: In Vivo Whole-Cell Recordings of the Inferior Colliculus in Awake Bats , 2007, The Journal of Neuroscience.

[5]  Shihab A. Shamma,et al.  Dichotomy of functional organization in the mouse auditory cortex , 2010, Nature Neuroscience.

[6]  T. Dau,et al.  A computational model of human auditory signal processing and perception. , 2008, The Journal of the Acoustical Society of America.

[7]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[8]  Koji Inui,et al.  Temporal dynamics of adaptation to natural sounds in the human auditory cortex. , 2008, Cerebral cortex.

[9]  R. Bowtell,et al.  “sparse” temporal sampling in auditory fMRI , 1999, Human brain mapping.

[10]  Mark A. Chevillet,et al.  Functional Correlates of the Anterolateral Processing Hierarchy in Human Auditory Cortex , 2011, The Journal of Neuroscience.

[11]  M. Merzenich,et al.  Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior-colliculus level , 1988, Hearing Research.

[12]  M. Harms,et al.  Detection and quantification of a wide range of fMRI temporal responses using a physiologically‐motivated basis set , 2003, Human brain mapping.

[13]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[14]  Jan Wouters,et al.  Cortical auditory steady-state responses to low modulation rates , 2009, International journal of audiology.

[15]  R. Carlyon,et al.  An Information Theoretic Characterisation of Auditory Encoding , 2007, PLoS biology.

[16]  D. Yves von Cramon,et al.  Is It Tonotopy after All? , 2002, NeuroImage.

[17]  Monica L. Hawley,et al.  Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei , 2005, Hearing Research.

[18]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[19]  Mary F. Howard,et al.  Hemispheric asymmetry in mid and long latency neuromagnetic responses to single clicks , 2009, Hearing Research.

[20]  David Poeppel,et al.  The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time' , 2003, Speech Commun..

[21]  John J. Foxe,et al.  Resolving precise temporal processing properties of the auditory system using continuous stimuli. , 2009, Journal of neurophysiology.

[22]  Alan C. Evans,et al.  Quantifying variability in the planum temporale: a probability map. , 1999, Cerebral cortex.

[23]  Robert B. Levy,et al.  Coexistence of Lateral and Co-Tuned Inhibitory Configurations in Cortical Networks , 2011, PLoS Comput. Biol..

[24]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[25]  Jonathan Z. Simon,et al.  Denoising based on time-shift PCA , 2007, Journal of Neuroscience Methods.

[26]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  A. Boemio,et al.  Hierarchical and asymmetric temporal sensitivity in human auditory cortices , 2005, Nature Neuroscience.

[28]  Jonathan Z. Simon,et al.  Fully complex magnetoencephalography , 2005, Journal of Neuroscience Methods.

[29]  Patrick Chauvel,et al.  Temporal envelope processing in the human left and right auditory cortices. , 2004, Cerebral cortex.

[30]  Gérard Faucon,et al.  Temporal envelope processing in the human auditory cortex: Response and interconnections of auditory cortical areas , 2008, Hearing Research.

[31]  S. Lomber,et al.  Evidence for Hierarchical Processing in Cat Auditory Cortex: Nonreciprocal Influence of Primary Auditory Cortex on the Posterior Auditory Field , 2009, The Journal of Neuroscience.

[32]  G. Recanzone Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys , 2000, Hearing Research.

[33]  T. Picton,et al.  Human Cortical Responses to the Speech Envelope , 2008, Ear and hearing.

[34]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[35]  N Suga,et al.  Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. , 2000, Journal of neurophysiology.

[36]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[37]  Jian Wang,et al.  Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons , 2002, Brain Research.

[38]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[39]  Li Sun,et al.  Newcastle University E-prints Citation for Published Item: Further Information on Publisher Website: Publishers Copyright Statement: Use Policy: Characterisation of the Bold Response Time Course at Different Levels of the Auditory Pathway in Non-human Primates , 2022 .

[40]  Nai Ding,et al.  Neural representations of complex temporal modulations in the human auditory cortex. , 2009, Journal of neurophysiology.

[41]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[42]  J. Pickett,et al.  The Acoustics of Speech Communication: Fundamentals, Speech Perception Theory, and Technology , 1998 .

[43]  Harri Valpola,et al.  Denoising Source Separation , 2005, J. Mach. Learn. Res..

[44]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[45]  P. Jen,et al.  Brief and short-term corticofugal modulation of subcortical auditory responses in the big brown bat, Eptesicus fuscus. , 2000, Journal of neurophysiology.

[46]  A. Rees,et al.  Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man , 1986, Hearing Research.

[47]  Aniruddh D. Patel,et al.  Temporal patterns of human cortical activity reflect tone sequence structure , 2000, Nature.

[48]  Daniel Bendor,et al.  Differential neural coding of acoustic flutter within primate auditory cortex , 2007, Nature Neuroscience.

[49]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[50]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[51]  R Schoonhoven,et al.  A whole head MEG study of the amplitude-modulation-following response: phase coherence, group delay and dipole source analysis , 2003, Clinical Neurophysiology.

[52]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[53]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[54]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[55]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[56]  Xiaoqin Wang Neural coding strategies in auditory cortex , 2007, Hearing Research.

[57]  Xiaoqin Wang,et al.  Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. , 2002, Journal of neurophysiology.

[58]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[59]  M. Schönwiesner,et al.  Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI , 2009, Proceedings of the National Academy of Sciences.

[60]  David Poeppel,et al.  Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension. , 2010, Journal of neurophysiology.

[61]  Christoph E Schreiner,et al.  Spectrotemporal Processing Differences between Auditory Cortical Fast-Spiking and Regular-Spiking Neurons , 2008, The Journal of Neuroscience.

[62]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[63]  Brian H Scott,et al.  Context-Dependent Adaptive Coding of Interaural Phase Disparity in the Auditory Cortex of Awake Macaques , 2002, The Journal of Neuroscience.

[64]  M. Scherg,et al.  Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex , 1999, Clinical Neurophysiology.

[65]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[66]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[67]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[68]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[69]  Edward L. Bartlett,et al.  Long-lasting modulation by stimulus context in primate auditory cortex. , 2005, Journal of neurophysiology.

[70]  O. Arthurs,et al.  How well do we understand the neural origins of the fMRI BOLD signal? , 2002, Trends in Neurosciences.

[71]  Herman Aguinis,et al.  Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs , 2004 .

[72]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. , 1997, The Journal of the Acoustical Society of America.

[73]  Frédéric E. Theunissen,et al.  The Modulation Transfer Function for Speech Intelligibility , 2009, PLoS Comput. Biol..

[74]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[75]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[76]  S. Lomber,et al.  Differential Modulatory Influences between Primary Auditory Cortex and the Anterior Auditory Field , 2009, The Journal of Neuroscience.

[77]  Terence W. Picton,et al.  The use of phase in the detection of auditory steady-state responses , 2001, Clinical Neurophysiology.

[78]  P. van Dijk,et al.  Mapping the Tonotopic Organization in Human Auditory Cortex with Minimally Salient Acoustic Stimulation , 2011, Cerebral cortex.

[79]  Manfred Kössl,et al.  Laminar Analysis of Inhibition in the Gerbil Primary Auditory Cortex , 2001, Journal of the Association for Research in Otolaryngology.

[80]  Katharina von Kriegstein,et al.  Encoding of Spectral Correlation over Time in Auditory Cortex , 2008, The Journal of Neuroscience.

[81]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[82]  G. Christianson,et al.  Stimulus-Specific Adaptation Occurs in the Auditory Thalamus , 2009, The Journal of Neuroscience.

[83]  R. Leahy,et al.  Equivalence of linear approaches in bioelectromagnetic inverse solutions , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[84]  J. Eggermont Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. , 2002, Journal of neurophysiology.

[85]  R. Freeman,et al.  Single-Neuron Activity and Tissue Oxygenation in the Cerebral Cortex , 2003, Science.

[86]  R. Patterson,et al.  The lower limit of melodic pitch. , 2001, The Journal of the Acoustical Society of America.

[87]  L. Aitkin,et al.  The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli , 2004, Experimental Brain Research.

[88]  A. King,et al.  Unraveling the principles of auditory cortical processing: can we learn from the visual system? , 2009, Nature Neuroscience.

[89]  Irina S. Sigalovsky,et al.  Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. , 2005, Journal of neurophysiology.

[90]  Mitchell Steinschneider,et al.  Coding of repetitive transients by auditory cortex on Heschl's gyrus. , 2009, Journal of neurophysiology.

[91]  Ying-Shing Chan,et al.  Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. , 2008, Journal of neurophysiology.

[92]  Richard S. J. Frackowiak,et al.  Representation of the temporal envelope of sounds in the human brain. , 2000, Journal of neurophysiology.

[93]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[94]  Bernhard Ross,et al.  Aging in Binaural Hearing Begins in Mid-Life: Evidence from Cortical Auditory-Evoked Responses to Changes in Interaural Phase , 2007, The Journal of Neuroscience.

[95]  Timothy Edward John Behrens,et al.  Reliable identification of the auditory thalamus using multi-modal structural analyses , 2006, NeuroImage.

[96]  Magdalena Wojtczak,et al.  Forward masking of amplitude modulation: basic characteristics. , 2005, The Journal of the Acoustical Society of America.

[97]  M. Malmierca,et al.  Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat , 2009, The Journal of Neuroscience.

[98]  David Poeppel,et al.  Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. , 2006, Journal of neurophysiology.

[99]  J. Rauschecker,et al.  Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. , 2004, Journal of neurophysiology.

[100]  M. Kilgard,et al.  Spectral and temporal processing in rat posterior auditory cortex. , 2008, Cerebral cortex.

[101]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[102]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[103]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[104]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[105]  M. Semple,et al.  Transformation of Temporal Properties between Auditory Midbrain and Cortex in the Awake Mongolian Gerbil , 2007, The Journal of Neuroscience.

[106]  Jonathan Z. Simon,et al.  Denoising based on spatial filtering , 2008, Journal of Neuroscience Methods.

[107]  Steven Greenberg,et al.  Temporal properties of spontaneous speech - a syllable-centric perspective , 2003, J. Phonetics.

[108]  Wilkin Chau,et al.  Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry , 2003, NeuroImage.

[109]  E Ahissar,et al.  Speech comprehension is correlated with temporal response patterns recorded from auditory cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[110]  David Poeppel,et al.  Auditory M50 and M100 responses to broadband noise: functional implications , 2004, Neuroreport.

[111]  Teemu Rinne,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[112]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[113]  Gary G. R. Green,et al.  Spatiotemporal reconstruction of the auditory steady-state response to frequency modulation using magnetoencephalography , 2010, NeuroImage.

[114]  Jacob Cohen Measurement Educational and Psychological Educational and Psychological Measurement Eta-squared and Partial Eta-squared in Fixed Factor Anova Designs Educational and Psychological Measurement Additional Services and Information For , 2022 .

[115]  R. Salmelin,et al.  Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.

[116]  T. Picton,et al.  The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. , 1987, Psychophysiology.

[117]  S. Rosen Temporal information in speech: acoustic, auditory and linguistic aspects. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[118]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[119]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[120]  R. Draganova,et al.  Auditory Cortical Response Patterns to Multiple Rhythms of AM Sound , 2002, Ear and hearing.

[121]  Edward L. Bartlett,et al.  Neural representations of temporally modulated signals in the auditory thalamus of awake primates. , 2007, Journal of neurophysiology.

[122]  D. Poeppel,et al.  Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: fMRI evidence. , 2012, Journal of neurophysiology.

[123]  M. Schönwiesner,et al.  Hemispheric asymmetry for spectral and temporal processing in the human antero‐lateral auditory belt cortex , 2005, The European journal of neuroscience.

[124]  D. Abrams,et al.  Right-Hemisphere Auditory Cortex Is Dominant for Coding Syllable Patterns in Speech , 2008, The Journal of Neuroscience.

[125]  D. Poeppel,et al.  Phase Patterns of Neuronal Responses Reliably Discriminate Speech in Human Auditory Cortex , 2007, Neuron.

[126]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[127]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[128]  C Pantev,et al.  A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. , 2000, The Journal of the Acoustical Society of America.

[129]  M A Schmuckler,et al.  Auditory perception of fractal contours. , 1993, Journal of experimental psychology. Human perception and performance.

[130]  R. Plomp,et al.  Effect of temporal envelope smearing on speech reception. , 1994, The Journal of the Acoustical Society of America.

[131]  D. P. Phillips,et al.  Level-dependent representation of stimulus frequency in cat primary auditory cortex , 2004, Experimental Brain Research.

[132]  M. Semple,et al.  Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. , 2001, Journal of neurophysiology.

[133]  C Pantev,et al.  Right hemispheric laterality of human 40 Hz auditory steady-state responses. , 2005, Cerebral cortex.

[134]  T W Picton,et al.  Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. , 1987, The Journal of the Acoustical Society of America.

[135]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.