Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries

U.S. Department of Energy, Office of Basic Energy Science; Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DEAC02-98CH10886]; Northeastern Center for Chemical Energy Storage; U.S. Department of Energy, Office of Science, Office of

[1]  Richard T. Haasch,et al.  Diagnosis of power fade mechanisms in high-power lithium-ion cells☆ , 2003 .

[2]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[3]  Junwei Jiang,et al.  The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte , 2007 .

[4]  Xiao‐Qing Yang,et al.  A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD , 2006 .

[5]  K. Amine,et al.  Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders , 2007 .

[6]  Tsuyoshi Sasaki,et al.  Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries II. Diagnostic Analysis by Electron Microscopy and Spectroscopy , 2009 .

[7]  Gerbrand Ceder,et al.  Structural stability of lithium manganese oxides , 1999 .

[8]  Ilias Belharouak,et al.  Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 , 2006 .

[9]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[11]  K. Amine,et al.  Effect of AlF3 Coating on Thermal Behavior of Chemically Delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2 , 2010 .

[12]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[13]  Daniel P. Abraham,et al.  Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells , 2003 .

[14]  Xiao‐Qing Yang,et al.  Time-Resolved XRD Study on the Thermal Decomposition of Li[sub 1−x]Ni[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathode Materials for Li-Ion Batteries , 2005 .

[15]  Xiao‐Qing Yang,et al.  Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD , 2009 .

[16]  Xiao‐Qing Yang,et al.  Electronic Structure of the Electrochemically Delithiated Li1-xFePO4 Electrodes Investigated by P K-edge X-ray Absorption Spectroscopy , 2006 .

[17]  J. Weaving,et al.  Development of high energy density Li-ion batteries based on LiNi1-x-yCoxAlyO2 , 2001 .

[18]  K. Amine,et al.  Thermal Stability of the Li ( Ni0.8Co0.15Al0.05 ) O2 Cathode in the Presence of Cell Components , 2006 .

[19]  C. Delmas,et al.  Thermal stability of lithium nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30) , 2003 .

[20]  P. Bruce,et al.  Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries , 2006 .

[21]  S. Okada,et al.  Thermal behavior of Li1-yNiO2 and the decomposition mechanism , 1998 .

[22]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[23]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[24]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[25]  K. Takei,et al.  Structural and Thermal Characteristics of Nickel Dioxide Derived from LiNiO2 , 2002 .

[26]  Y. Shao-horn,et al.  Thermal Instability of Cycled Li x Ni 0.5 Mn 0.5 O 2 Electrodes: An in Situ Synchrotron X-ray Powder Diffraction Study , 2008 .

[27]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[28]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[29]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[30]  Kyung-Keun Lee,et al.  Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries , 2001 .

[31]  J. Cabana,et al.  Investigation of the Structural Changes in Li[NiyMnyCo(1−2y)]O2 (y = 0.05) upon Electrochemical Lithium Deintercalation† , 2010 .